CF-1013

A. Piles With Stones

比较两个序列的和,因为只能拿走或者不拿,所以总数不能变大。

B. And

  • 答案只有 -1,0,1,2几种可能,所以对于每一种答案都暴力扫一次是可以的
  • 或者对于每个 \(a_i\) ,将\(a_i\) 标记加一,如果\(a_i \neq a_i\& x\) ,将\(a_i\&x\) 用另一个数组标记加一。然后整体扫一次就可以了
#include <bits/stdc++.h>
using namespace std;
int n,x;
int a[100010],b[100010];
int main(){
cin>>n>>x;
for(int i=1;i<=n;i++){
int y;
scanf("%d",&y);
a[y]++;
if((x&y)!=y)
b[x&y]++;
}
int res = -1;
for(int i=0;i<=100000;i++)
{
if(a[i]>=2)res = 0;
else if(res!=0&&a[i]==1&&b[i]>=1)res = 1;
else if(res!=1&&b[i]>=2)res = 2;
}
cout<<res<<endl;
return 0;
}

C. Photo of The Sky

我们关心的只是 \(x_{max} - x_{min}\) 和 \(y_{max} - y_{min}\)

现在的只是整个坐标的合集。先整体排个序。

​ $$ a_1,a_2 \cdots a_{2\times n-1},a_{2 \times n}$$

  • 如果序列中最大值和最小值在同一个集合,那么枚举另一个集合的最大元素或者最小元素,得到另一个集合的最小的 \(max - min\)
  • 如果序列中最大值和最小值不在同一个集合,那么只有将 \(a_1 \cdots a_n\) 分到一个集合,\(a_{n+1} \cdots a_{2\times n}\) 分到一个集合时最优
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n;
ll a[200010];
int main(){
scanf("%d",&n);
for(int i=0;i<2*n;i++)
scanf("%lld",&a[i]);
sort(a,a+2*n);
ll mi = 1ll<<60;
//第一种情况,枚举另一个集合的最小值a[i]
for(int i=1;i<n;i++)
mi = min(mi,a[i+n-1]-a[i]));
mi = mi*(a[2*n-1]-a[0]);//结算,获得面积
mi = min(mi,(a[n-1]-a[0])*(a[2*n-1]-a[n]));//与第二种情况作比较
cout<<mi<<endl;
return 0;
}

D. Chemical table

tag: 并查集,联通块

题目操作:若有\((r_1,c_1),(r_1,c_2),(r_2,c_1)\) ,那么自动生成\((r_2,c_2)\)

抛开二维平面,寻找坐标点之间的关系,可以发现一条规律:如果\(r_1\)与\(c_1,r_2\)有关系,\(r_2\)与\(c_2\)有关系,则\(r_2\)与\(c_2\)会有关系。如果把他们看成点与点之间的关系,可以画出一个图,这个图是联通的。而任意两个不联通的点只需要再添加一个点就可以使得他们联通。所以我们只需要求出联通块个数就可以知道答案了。

#include <bits/stdc++.h>
using namespace std;
int n,m,q;
int f[400010];
//并查集
int find(int x){
return x==f[x]? x : f[x] = find(f[x]);
}
int main(){
cin>>n>>m>>q;
for(int i=1;i<=n+m;i++)f[i] = i;
for(int i=0;i<q;i++){
int x,y;
cin>>x>>y;
y+=n;
x = find(x);y=find(y);
f[x] = y;
}
//先随便找一个联通块
int root = find(1);
int res = 0;
for(int i=2;i<=n+m;i++){
int x = find(i);
//如果发现另一个联通块,则先使得他们联通,然后res++
if(x!=root){
f[x] = root;res++;
}
}
cout<<res<<endl;
return 0;
}

CF-1013 (2019/02/09 补)的更多相关文章

  1. 2019/02/09 对于KinectFusion 的理解

    网上有很多关于Kinect Fusion 的详细介绍,包括各个部分的算法,思路,以及应用上的限制和优化. 在此就不多介绍了. KinectFusion 提供了非常基础的用RGB-D 相机实现的 Den ...

  2. 2019.02.09 codeforces gym 100548F. Color(容斥原理)

    传送门 题意简述:对n个排成一排的物品涂色,有m种颜色可选. 要求相邻的物品颜色不相同,且总共恰好有K种颜色,问所有可行的方案数.(n,m≤1e9,k≤1e6n,m\le1e9,k\le1e6n,m≤ ...

  3. 2019.02.09 codeforces451 E. Devu and Flowers(容斥原理)

    传送门 题意简述:给出n堆花,对于第j堆,有f[j]朵花,每堆花的颜色不同,现在要从中选出s朵,求方案数. 思路: 假设所有花没有上限直接插板法,现在有了上限我们用容斥扣掉多算的 状压一下再容斥:fi ...

  4. 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)

    传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi​表示保证集合iii中所有点都连通其余点随意的方案数. gig ...

  5. 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)

    传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​ ...

  6. 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)

    传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai​,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...

  7. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

  8. 2019.02.09 bzoj4455: [Zjoi2016]小星星(容斥原理+dp)

    传送门 题意简述:给一张图和一棵树(点数都为n≤17n \le17n≤17),问有多少种给树的标号方法方法使得图中去掉多余的边之后和树一模一样. 思路: 容斥好题啊. 考虑fi,jf_{i,j}fi, ...

  9. 2019.02.09 bzoj1042: [HAOI2008]硬币购物(完全背包+容斥原理)

    传送门 题意简述:有四种面值的硬币,现在qqq次询问(q≤1000)(q\le1000)(q≤1000),每次给出四种硬币的使用上限问最后刚好凑出sss块钱的方案数(s≤100000)(s\le100 ...

随机推荐

  1. 解决windows下nginx中文文件名乱码

    我的根目录文件夹放在d盘work文件夹下,一般这样配置 nginx\conf\nginx.conf location / { root D:/work; index index_bak.html; a ...

  2. Java中

  3. MyIfmHttpClient

    package com.yd.ifm.client.caller.util.http; import java.util.Map; import com.yd.ifm.client.caller.mo ...

  4. 1137 - Sin your life sin公式 + 枚举

    http://www.ifrog.cc/acm/problem/1137 和差化积公式, 变成2 * sin((x + y) / 2) * cos((x - y) / 2) + sin(n - (x ...

  5. .net程序员业余Android开发赚点外快(介绍一下自己的经验)

    记得是11年10月份开始研究android的,当时还不会java,听说android比较火,自己也买了个垃圾android机,平时工作也不是特别忙,于是我就突发奇想,想试试做一下android应用可不 ...

  6. springboot使用schedule定时任务

    定时任务一般会存在中大型企业级项目中,为了减少服务器.数据库的压力往往会采用时间段性的去完成某些业务逻辑.比较常见的就是金融服务系统推送回调,一般支付系统订单在没有收到成功的回调返回内容时会持续性的回 ...

  7. 【css】css2实现两列三列布局的方法

    前言 对于 flex 弹性布局相信大家都有所了解,它是 css3 中的属性,然而它具有一定的兼容性问题.楼主前几天面试时遇到了面试官需要设计一个两列布局,我当然就说父元素 flex 吧哩吧啦,然而需要 ...

  8. (2017.10.16) javascript 数据类型转换与操作

    javascript 有 5 种基本数据类型:undefined.null.Boolean.String.Number,还有1 种较复杂的数据类型 Object:各种类型之间可以相互转换,其中有些有趣 ...

  9. JavaWeb_03_JavaScript学习小结1

    1.javascript的简介 是基于对象和事件驱动的语言,应用于客户端. 基于对象: 提供好了很多对象,可以直接拿过来使用 事件驱动: html做网站静态效果,javascript动态效果 客户端: ...

  10. 根据用户ID生成不重复的最小6位随机邀请码

    网上看到一个例子,借鉴修改一下 实现根据long类型的用户ID生成6位随机邀请码,并且根据邀请码能算出用户ID.代码如下: /** 自定义进制(选择你想要的进制数,不能重复且最好不要0.1这些容易混淆 ...