【转】PCA for opencv
对于PCA,一直都是有个概念,没有实际使用过,今天终于实际使用了一把,发现PCA还是挺神奇的。
在OPENCV中使用PCA非常简单,只要几条语句就可以了。
1、初始化数据
//每一行表示一个样本
CvMat* pData = cvCreateMat( 总的样本数, 每个样本的维数, CV_32FC1 );
CvMat* pMean = cvCreateMat(1, 样本的维数, CV_32FC1);
//pEigVals中的每个数表示一个特征值
CvMat* pEigVals = cvCreateMat(1, min(总的样本数,样本的维数), CV_32FC1);
//每一行表示一个特征向量
CvMat* pEigVecs = cvCreateMat( min(总的样本数,样本的维数), 样本的维数, CV_32FC1);
2、PCA处理,计算出平均向量pMean,特征值pEigVals和特征向量pEigVecs
cvCalcPCA( pData, pMean, pEigVals, pEigVecs, CV_PCA_DATA_AS_ROW );
3、选出前P个特征向量(主成份),然后投影,结果保存在pResult中,pResult中包含了P个系数
CvMat* pResult = cvCreateMat( 总的样本数, PCA变换后的样本维数(即主成份的数目), CV_32FC1 );
cvProjectPCA( pData, pMean, pEigVecs, pResult );
4、 重构,结果保存在pRecon中
CvMat* pRecon = cvCreateMat( 总的样本数, 每个样本的维数, CV_32FC1 );
cvBackProjectPCA( pResult, pMean, pEigVecs, pRecon );
5、重构误差的计算
计算pRecon和pData的"差"就可以了.
使用时如果是想用PCA判断“是非”问题,则可以先用正样本计算主成分,判断时,对需要判断得数据进行投影,然后重构,计算重构出的数据与原数据的差异,如果差异在给定范围内,可以认为“是”。
如果相用PCA进行分类,例如对数字进行分类,则先用所有数据(0-9的所有样本)计算主成分,然后对每一类数据进行投影,计算投影的系数,可简单得求平 均。即对每一类求出平均系数。分类时,将需要分类得数据进行投影,得到系数,与先前计算出得每一类得平均系数进行比较,可判为最接近得一类。当然这只是最 简单得使用方法。
参考http://www.cnblogs.com/cvlabs/archive/2010/05/14/1735230.html
【转】PCA for opencv的更多相关文章
- opencv学习之路(39)、PCA
一.PCA理论介绍 网上已经有许多介绍pca原理的博客,这里就不重复介绍了.详情可参考 http://blog.csdn.net/zhongkelee/article/details/44064401 ...
- OpenCV中PCA实现人脸降维
前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. ...
- OpenCV学习(35) OpenCV中的PCA算法
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html 对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = ...
- 【转】PCA算法学习_1(OpenCV中PCA实现人脸降维)
前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. ...
- 用opencv实现的PCA算法,非API调用
理论參考文献:但此文没有代码实现.这里自己实现一下,让理解更为深刻 问题:如果在IR中我们建立的文档-词项矩阵中,有两个词项为"learn"和"study",在 ...
- opencv基于PCA降维算法的人脸识别
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...
- opencv——PCA(主要成分分析)数学原理推导
引言: 最近一直在学习主成分分析(PCA),所以想把最近学的一点知识整理一下,如果有不对的还请大家帮忙指正,共同学习. 首先我们知道当数据维度太大时,我们通常需要进行降维处理,降维处理的方式有很多种, ...
- OpenCV人脸识别Eigen算法源码分析
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...
- atitit opencv apiattilax总结 约500个函数 .xlsx
atitit opencv apiattilax总结 约500个函数 .xlsx 1.1. CxCore中文参考手册 1 1.2. 机器学习中文参考手册 knn svm 1 1.3. CvAu ...
随机推荐
- 剑指Offer的学习笔记(C#篇)-- 不用加减乘除做加法
题目描述 写一个函数,求两个整数之和,要求在函数体内不得使用+.-.*./四则运算符号. 一 . 理解题目 这个题目可以让我们回归到小学,想想加法的竖式是怎么写的,哈哈,如果当时你不是那个竖式写错了, ...
- JVM虚拟机的大概了解(新人面试必看!)
一. 引言,环境安装测试中的代码解析 1. HotSpot(TM) 64-bit Server VM(build 25.181-b13,mixed mode),这是多种 HotSo ...
- Python小世界:彻底搞懂Python一切皆对象!!!
前言 犹记得当初学习Python的时候,对于Python一切皆对象很是懵逼,因为Python是面向对象的动态型语言,而在函数及高阶函数的应用中,如若对于一切皆对象不是有很透彻的了解,基础不是那么牢固的 ...
- oracle 查看 job 日志
select * from user_scheduler_job_log select * from user_scheduler_job_run_details select * from use ...
- PostgreSQL - invalid input syntax for type timestamp with time zone
问题 在执行以下sql时报错: select COALESCE(null,null,now(),''); 报错如下: SQL Error [22007]: ERROR: invalid input s ...
- ES6新特性使用小结(六)
十三.promise 异步编程 ①.使用 promise 模拟异步操作 { //ES5 中的 callback 解决 异步操作问题 let ajax = function (callback) { c ...
- Codeforces Round #527-B. Teams Forming(贪心)
time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...
- Web自动化测试—PO设计模式(三)
test_case目录下面放你要执行的用例 目录结构 ui_auto_test --src --test_case --__init.py --test_login_case --pages --__ ...
- 持续集成~Jenkins构建GitHub项目的实现
有了前两讲的基础,这回我们就可以把github上的项目做到CI(jenkins)里了,让它自动去集成部署,持续集成~Jenkins里的NuGet和MSBuild插件,持续集成~Jenkins里的pow ...
- js正则匹配获取文件名
//获取文件名,不带后缀 var file_name=file_path.replace(/(.*\/)*([^.]+).*/ig,"$2"); //获取文件后缀 1.var Fi ...