2016北京集训测试赛(十七)Problem A: crash的游戏
Solution
相当于要你计算这样一个式子:
\]
考虑到\(m\)非常大, 而\(k\)却比较小, 我们尝试将\(x\)的\(m\)相关转化为\(k\)相关. 我们用如下现实意义来考虑: 令\(N = n - m\), 则我们相当于有两堆球, 第一堆球以单个球为单位, 总共\(N\)个, 我们要在其中取出\(i\)个; 第二堆球以一对球连在一起为单位, 总共有\(m\)对, 我们要在其中取出任意多对球, 拆开放入第一堆中, 然后问你在第一堆中取\(k\)个球总共有多少种的方案.
这个问题仍然不好解决, 我们继续考虑: 我们假设这\(k\)个球中, 总共用了第二堆球中的\(j\)对. 也就是说, 这\(k\)个球中\(i\)个是在第一堆中取来的, 剩下\(k - i\)个用到了第二堆中的\(j\)对球, 其中每一对既有可能被用了一个, 也有可能用了两个. 考虑方案数: 在第一堆中取\(i\)个显然就是\(\left( \begin{array}{} N \\ i \end{array}{} \right)\); 我们用f[i][j]
来表示在第2堆中用到\(i\)对, 并且总共取出\(j\)个球的方案数, 考虑\(f[i][j]\)的递归式:
\]
这样以来, 总共的方案数就是
\]
考虑到询问有\(500\)组, 我们要作一些预处理, 记忆化某些信息.
#include <cstdio>
#include <cctype>
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1; char c;
while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int K = 300, MOD = (int)1e9 + 7;
int prod[K + 1], prodInv[K + 1], f[K + 1][K << 2], dwn[K + 1], _dwn[K + 1], pw[K + 1];
inline int power(int a, int x)
{
if(x < 0) return 0;
int res = 1;
for(; x; a = (long long)a * a % MOD, x >>= 1) if(x & 1) res = (long long)res * a % MOD;
return res;
}
inline int _C(int m)
{
if(m < 0) return 0;
return (long long)_dwn[m] * prodInv[m] % MOD;
}
inline int C(int m)
{
if(m < 0) return 0;
return (long long)dwn[m] * prodInv[m] % MOD;
}
inline void pretreat()
{
prod[0] = prodInv[0] = 1; for(int i = 1; i <= K; ++ i) prod[i] = (long long)prod[i - 1] * i % MOD, prodInv[i] = power(prod[i], MOD - 2);
f[0][0] = 1;
for(int i = 1; i <= K; ++ i) for(int j = 1; j <= i << 1; ++ j) f[i][j] = (f[i - 1][j - 1] * 2 % MOD + (j >= 2 ? f[i - 1][j - 2] : 0)) % MOD;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("crash.in", "r", stdin);
freopen("crash.out", "w", stdout);
#endif
using namespace Zeonfai;
pretreat();
for(int T = getInt(); T --; )
{
int n = getInt(), m = getInt(), k = getInt(), ans = 0;
dwn[0] = 1; dwn[1] = m; for(int i = 2; i <= k; ++ i) dwn[i] = (long long)dwn[i - 1] * (m - i + 1) % MOD;
_dwn[0] = 1; _dwn[1] = n - m; for(int i = 2; i <= k; ++ i) _dwn[i] = (long long)_dwn[i - 1] * (n - m - i + 1) % MOD;
for(int i = 0; i <= k; ++ i) pw[i] = power(2, m - i);
for(int i = 0; i <= k; ++ i)
{
int cur = 0;
for(int j = (k - i + 1) / 2; j <= k - i; ++ j)
cur = (cur + (long long)C(j) % MOD * pw[j] % MOD * f[j][k - i] % MOD) % MOD;
ans = (ans + (long long)cur * _C(i) % MOD) % MOD;
}
printf("%d\n", ans);
}
}
2016北京集训测试赛(十七)Problem A: crash的游戏的更多相关文章
- 2016北京集训测试赛(十七)Problem C: 数组
Solution 线段树好题. 我们考虑用last[i]表示\(i\)这个位置的颜色的上一个出现位置. 考虑以一个位置\(R\)为右端点的区间最远能向左延伸到什么位置: \(L = \max_{i \ ...
- 2016北京集训测试赛(十七)Problem B: 银河战舰
Solution 好题, 又是长链剖分2333 考虑怎么统计答案, 我场上的思路是统计以一个点作为结尾的最长上升链, 但这显然是很难处理的. 正解的方法是统计以每个点作为折弯点的最长上升链. 具体的内 ...
- 2016北京集训测试赛(十六)Problem C: ball
Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sq ...
- 2016北京集训测试赛(十六)Problem B: river
Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. ...
- 2016北京集训测试赛(十六)Problem A: 任务安排
Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道 ...
- BZOJ 4543 2016北京集训测试赛(二)Problem B: thr 既 长链剖分学习笔记
Solution 这题的解法很妙啊... 考虑这三个点可能的形态: 令它们的重心为距离到这三个点都相同的节点, 则其中两个点分别在重心的两棵子树中, 且到重心的距离相等; 第三个点可能在重心的一棵不同 ...
- 2016北京集训测试赛(十四)Problem B: 股神小D
Solution 正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可. link-cut tree维护子树大 ...
- 2016北京集训测试赛(十四)Problem A: 股神小L
Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格 ...
- 2016北京集训测试赛(十三) Problem B: 网络战争
Solution KD tree + 最小割树
随机推荐
- IOS开发---菜鸟学习之路--(二十一)-利用正则表达式解析URL获取其中的参数
因为项目需要解析URL当中参数的部分,在网上搜索了一下都没有相关的资料. 然后就自己写了一个 其实我就是通过正则表达式来处理URL 进行解析的 好了直接上代码吧 也是非常的简单,大家拷贝过去就可以使用 ...
- python学习-- Django进阶之路 model的 objects对象 转 json
# objects_to_json: 将 model对象 转化成 json# json_to_objects: 将 将反序列化的json 转为 model 对象 def json_field(fiel ...
- Halcon11 Linux 下载
Halcon11 Linux下载地址:http://www.211xun.com/download_page_3.html HALCON 11 是一套机器视觉图像处理库,由一千多个算子以及底层的数据管 ...
- js跨域post请求
function funPostBack(srvMethod){ /* var contentNR=$(document.getElementById("reportFrame") ...
- 构建乘积数组--java
题目:给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1].不能使 ...
- MySql数据库 - 4.可视化操作数据库
创建表 对表中数据进行 增.删.改.查 查 右键刚刚创建的表 - 选择查看前 1000 条数据 增.改 表格必须有主键才能添加数据,主键是不能重复的 1. 右键表 - 查看前 1000 条数据 2. ...
- [ZJOI2010][bzoj1834] 网络扩容 [费用流]
题面 传送门 思路 第一问:无脑网络流跑一波 第二问: 先考虑一个贪心的结论:扩容出来的扩容流量一定要跑满 证明显然 因此我们可以把扩容费用可以换个角度思考,变成增加一点流量,花费W的费用 这样,我们 ...
- 简单的log
简单的方法想日志中追加内容 public static void updateSql(string Name,string str) { FileStream fs = new FileStream( ...
- web服务之http
HTTP协议 HTTP协议,全称HyperText Transfer Protocol即超文本传输协议,是互联网中最常用的一种网络协议.HTTP协议是互联网上的通信协议方案之一.它有很多的应用, 但最 ...
- EasyUI-Accordion
EasyUI-Accordion Accordion英文翻译就是 手风琴活 或者 可折叠的 参考效果图: 从图中我们其实也可以将这种组件理解为手风琴式的组件. 该组件方便对数据进行分类管理,在有限空间 ...