POJ 3155 Hard Life(最大密度子图+改进算法)
Time Limit: 8000MS | Memory Limit: 65536K | |
Total Submissions: 9012 | Accepted: 2614 | |
Case Time Limit: 2000MS | Special Judge |
Description
John is a Chief Executive Officer at a privately owned medium size company. The owner of the company has decided to make his son Scott a manager in the company. John fears that the owner will ultimately give CEO position to Scott if he does well on his new manager position, so he decided to make Scott’s life as hard as possible by carefully selecting the team he is going to manage in the company.
John knows which pairs of his people work poorly in the same team. John introduced a hardness factor of a team — it is a number of pairs of people from this team who work poorly in the same team divided by the total number of people in the team. The larger is the hardness factor, the harder is this team to manage. John wants to find a group of people in the company that are hardest to manage and make it Scott’s team. Please, help him.

In the example on the picture the hardest team consists of people 1, 2, 4, and 5. Among 4 of them 5 pairs work poorly in the same team, thus hardness factor is equal to 5⁄4. If we add person number 3 to the team then hardness factor decreases to 6⁄5.
Input
The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 1000). Here n is a total number of people in the company (people are numbered from 1 to n), and m is the number of pairs of people who work poorly in the same team. Next m lines describe those pairs with two integer numbers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi) on a line. The order of people in a pair is arbitrary and no pair is listed twice.
Output
Write to the output file an integer number k (1 ≤ k ≤ n) — the number of people in the hardest team, followed by k lines listing people from this team in ascending order. If there are multiple teams with the same hardness factor then write any one.
Sample Input
sample input #1
5 6
1 5
5 4
4 2
2 5
1 2
3 1 sample input #2
4 0
Sample Output
sample output #1
4
1
2
4
5 sample output #2
1
1
Hint
Note, that in the last example any team has hardness factor of zero, and any non-empty list of people is a valid answer.
题目链接:POJ 3155
官方解说在胡伯涛Amber的最小割模型在信息学竞赛中的应用论文中最大密度子图是什么意思呢?就是选出一个子图,使得其子图的${边数 \over 顶点数}$最大,即${|E'| \over |V'|}$最大,后者是不是非常的熟悉,跟01规划非常像,就是使得该比值最大,那么按照01规划的思路,设这个比值为$g$,那么二分出一个$g$的最大值使得$|E'|-g*|V'|>0$,但是我怎么知道$E'$和$V'$怎么取啊?再看式子里面的$E'$和$V'$,可以发现若一条边$e_i$在边集$E'$中,那么$e_i$的两个端点$u_i$与$v_i$必定在顶点集$V'$中,也就是说$e_i$存在的必要条件是$u_i$,$v_i$两点的存在,然后再次观察这个式子,又可以发现可以把边看成新的虚拟点,点还是原来的点,虚拟点的点权为正数1,原来点的点权为负数-g,那么只要在这个新图里求一个最大权闭合图的最大权值就是这个$|E'|-g*|V'|$的最大值即这个式子的最优情况,然后根据其与0(或者叫eps…)的关系进行二分即可,码农题……
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 110;
const int M = 1010;
const double eps = 1e-8;
struct edge
{
int to, nxt;
double cap;
edge() {}
edge(int _to, int _nxt, double _cap): to(_to), nxt(_nxt), cap(_cap) {}
};
struct info
{
int u, v;
};
info e[M];
edge E[(N + 3 * M) << 1];
int head[N + M], tot;
int d[N + M]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, double cap)
{
E[tot] = edge(t, head[s], cap);
head[s] = tot++;
E[tot] = edge(s, head[t], 0);
head[t] = tot++;
}
int bfs(int s, int t)
{
queue<int>Q;
CLR(d, -1);
d[s] = 0;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
double dfs(int s, int t, double f)
{
if (s == t || f == 0)
return f;
double ret = 0;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0)
{
double df = dfs(v, t, min(f, E[i].cap));
if (df > 0)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
f -= df;
if (f == 0)
break;
}
}
}
if (ret == 0)
d[s] = -1;
return ret;
}
double dinic(int s, int t)
{
double ret = 0;
while (bfs(s, t))
ret += dfs(s, t, 1e9);
return ret;
}
double Maxweight(int n, int m, double g)
{
init();
int S = 0, T = n + m + 1;
int i;
for (i = 1; i <= n; ++i) //负权点连到汇点T
add(i, T, g);
for (i = 1; i <= m; ++i) //m个正权点从S连出
{
add(S, n + i, 1.0);
add(n + i, e[i].u, 1e9); //原有边保留
add(n + i, e[i].v, 1e9);
}
return m * 1.0 - dinic(S, T); //正权点-最大流得到最大权
}
int main(void)
{
int n, m, i;
while (~scanf("%d%d", &n, &m))
{
for (i = 1; i <= m; ++i)
scanf("%d%d", &e[i].u, &e[i].v);
if (!m)
{
puts("1");
puts("1");
}
else
{
double L = 1.0 / n, R = m;
double ans = 1;
double dx = 1.0 / n / n;
while (fabs(R - L) >= dx)
{
double mid = (L + R) / 2.0;
if (fabs(Maxweight(n, m, mid)) >= eps)
{
L = mid;
ans = mid;
}
else
R = mid;
}
Maxweight(n, m, ans);
vector<int>pos;
for (i = 1; i <= n; ++i)
if (~d[i])
pos.push_back(i);
int sz = pos.size();
sort(pos.begin(), pos.end());
printf("%d\n", sz);
for (i = 0; i < sz; ++i)
printf("%d\n", pos[i]);
}
}
return 0;
}
改进算法:由论文可得$h(g)={{U*n-c[S, T]} \over 2}$,其中可以令$U=m$,然后新的建图方式为
改进后从600ms到200ms,效果还是不错的
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 110;
const int M = 1010;
const double eps = 1e-8;
struct edge
{
int to, nxt;
double cap;
edge() {}
edge(int _to, int _nxt, double _cap): to(_to), nxt(_nxt), cap(_cap) {}
};
struct info
{
int u, v;
};
info e[M];
edge E[(N + M) << 2];
int head[N], tot;
int d[N], deg[N]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, double cap)
{
E[tot] = edge(t, head[s], cap);
head[s] = tot++;
E[tot] = edge(s, head[t], 0);
head[t] = tot++;
}
int bfs(int s, int t)
{
queue<int>Q;
CLR(d, -1);
d[s] = 0;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
double dfs(int s, int t, double f)
{
if (s == t || f == 0)
return f;
double ret = 0;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0)
{
double df = dfs(v, t, min(f, E[i].cap));
if (df > 0)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
f -= df;
if (f == 0)
break;
}
}
}
if (ret == 0)
d[s] = -1;
return ret;
}
double dinic(int s, int t)
{
double ret = 0;
while (bfs(s, t))
ret += dfs(s, t, 1e9);
return ret;
}
double CST(int n, int m, double g)
{
init();
double U = m;
int S = 0, T = n + 1;
int i;
for (i = 1; i <= n; ++i) //<S,v,U>与<v,T,U+2g-dv>
{
add(S, i, U);
add(i, T, U + 2 * g - 1.0 * deg[i]);
}
for (i = 1; i <= m; ++i)//(u,v,1)
{
add(e[i].u, e[i].v, 1.0);
add(e[i].v, e[i].u, 1.0);
}
return dinic(S, T); //直接计算最小割值(最大流值)
}
int main(void)
{
int n, m, i;
while (~scanf("%d%d", &n, &m))
{
CLR(deg, 0);
for (i = 1; i <= m; ++i)
{
scanf("%d%d", &e[i].u, &e[i].v);
++deg[e[i].u];
++deg[e[i].v];
}
if (!m)
{
puts("1");
puts("1");
}
else
{
double L = 1.0 / n, R = m;
double ans = 1;
double dx = 1.0 / n / n;
while (fabs(R - L) >= dx)
{
double mid = (L + R) / 2.0;
double hg = (m * n * 1.0 - CST(n, m, mid)) / 2;
if (hg >= eps)
{
L = mid;
ans = mid;
}
else
R = mid;
}
CST(n, m, ans);
vector<int>pos;
for (i = 1; i <= n; ++i)
if (~d[i])
pos.push_back(i);
int sz = pos.size();
sort(pos.begin(), pos.end());
printf("%d\n", sz);
for (i = 0; i < sz; ++i)
printf("%d\n", pos[i]);
}
}
return 0;
}
POJ 3155 Hard Life(最大密度子图+改进算法)的更多相关文章
- POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分
http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...
- POJ 3155 Hard Life(最大密度子图)
裸题.输入一个无向图,输出最大密度子图(输出子图结点数和升序编号). 看了<最小割模型在信息学竞赛中的应用——胡伯涛>的一部分,感觉01分数规划问题又是个大坑.暂时还看不懂. 参考http ...
- poj 3155 最大密度子图
思路: 这个还是看的胡伯涛的论文<最小割在信息学竞赛中的应用>.是将最大密度子图问题转化为了01分数规划和最小割问题. 直接上代码: #include <iostream> # ...
- POJ 3155:Hard Life(最大密度子图)
题目链接 题意 给出n个人,和m对有冲突的人.要裁掉一些人,使得冲突率最高,冲突率为存在的冲突数/人数. 思路 题意可以转化为,求出一些边,使得|E|/|V|最大,这种分数规划叫做最大密度子图. 学习 ...
- 静态频繁子图挖掘算法用于动态网络——gSpan算法研究
摘要 随着信息技术的不断发展,人类可以很容易地收集和储存大量的数据,然而,如何在海量的数据中提取对用户有用的信息逐渐地成为巨大挑战.为了应对这种挑战,数据挖掘技术应运而生,成为了最近一段时期数据科学的 ...
- POJ 3155 Hard Life
Hard Life Time Limit: 8000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...
- 排序系列 之 简单选择排序及其改进算法 —— Java实现
简单选择排序算法: 基本思想: 在待排序数据中,选出最小的一个数与第一个位置的数交换:然后在剩下的数中选出最小的数与第二个数交换:依次类推,直至循环到只剩下两个数进行比较为止. 实例: 0.初始状态 ...
- POJ3155 Hard Life [最大密度子图]
题意:最大密度子图 #include<iostream> #include<cstdio> #include<cstring> #include<algo ...
- KMP及其改进算法
本文主要讲述KMP已经KMP的一种改进方法.若发现不正确的地方,欢迎交流指出,谢谢! KMP算法的基本思想: KMP的算法流程: 每当一趟匹配过程中出现字符比较不等时,不需回溯 i 指针,而是利用已经 ...
随机推荐
- 使用VSCode搭建TypeScript开发环境 (重点)
下载TypeScript 在CMD(Windows系统)或者终端(macOS系统)中输入一下命令: npm install -g typescript 下载VSCode VSCode是我使用过最棒的编 ...
- Jmeter后置处理器
一.什么是关联? 将请求1的输出 作为 请求2 的输入,则称之为关联 例如:“用户登录”请求中服务器返回了token,“查询用户信息”请求需要把token返回给服务器进行验证 二.通过JSON Pat ...
- react树状组件
最近在react项目中需要一个树状组件,但是又不想因为这个去引入一套UI组件,故自己封装了一个基于react的树状组件, 个人认为比较难得部分在于数据的处理,话不多说直接上代码: 下面是tree.js ...
- JS控制台的使用
1.快捷键F12可直接进入控制台(或者单机右键->检查)用于bug调试 2.控制台如图: Elements:表示所有的js元素 Console:常用的有如下几个功能: ①console.log: ...
- c++引用与指针的区别
c++引用与指针的区别 ★ 相同点: 1. 都是地址的概念: 指针指向一块内存,它的内容是所指内存的地址:引用是某块内存的别名. 指针的权威定义: In a declaration T D where ...
- ElasticSearch High Level REST API【2】搜索查询
如下为一段带有分页的简单搜索查询示例 在search搜索中大部分的搜索条件添加都可通过设置SearchSourceBuilder来实现,然后将SearchSourceBuilder RestHighL ...
- LeetCode946-验证栈序列
问题:验证栈序列 给定 pushed 和 popped 两个序列,只有当它们可能是在最初空栈上进行的推入 push 和弹出 pop 操作序列的结果时,返回 true:否则,返回 false . 示例 ...
- 数据存储之json文件处理和csv文件处理
什么是json: JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式.它基于 ECMAScript (w3c制定的js规范)的一个子集,采用 ...
- 初学js之qq聊天展开实例
实现这样的效果. 直接看代码,html部分: <body> <div class="box"> <div class="lists" ...
- 11、python中的函数(基础)
一.什么是函数? 在数学中,x2+2x2+3=10这样的叫方程. 而ax2+bx2+c=d这样的才叫函数.数学的函数中,abcd等待输入的未知量叫自变量,它需要我们自己去输入,而x这种待求得未知量叫因 ...