BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

Sample Input

3
1 2 50
1 3 50
50 0 0

Sample Output

1.000000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。


求通电的元件期望个数等价于求每个点通电的概率,然后加一起。

设F[x]表示x的子树不给x供电的概率。

需要满足x不带电,且对于所有儿子,要么儿子不带电,要么儿子带电,连得这条边不带电。

f[x]=(1-w[x])*(f[to]+(1-f[to])*(1-val[i]))。

设g[x]表示x的父亲不给x供电的概率。

需要先求一个fa[x]不带电(没有儿子的影响下)的概率,然后同上。

这个的概率是(f[fa[x]]*g[fa[x]])/(f[x]+(1-f[x])*(1-val[i]))。

最后每个点带电的概率就是1-f[x]*g[x]。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
typedef double f2;
#define N 500050
int head[N],to[N<<1],nxt[N<<1],n,cnt;
f2 val[N<<1],w[N],f[N],g[N],ans[N],sum;
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w/100.0;
}
void dfs1(int x,int y) {
int i;
f[x]=1-w[x];
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs1(to[i],x);
f[x]=f[x]*(f[to[i]]+(1-f[to[i]])*(1-val[i]));
}
}
}
void dfs2(int x,int y) {
ans[x]=1-f[x]*g[x];
sum+=ans[x];
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
f2 tmp=(1-ans[x])/(f[to[i]]+(1-f[to[i]])*(1-val[i]));
g[to[i]]=tmp+(1-tmp)*(1-val[i]);
dfs2(to[i],x);
}
}
}
int main() {
n=rd();
register int i,x,y,z;
for(i=1;i<n;i++) {
x=rd(); y=rd(); z=rd(); add(x,y,z); add(y,x,z);
}
for(i=1;i<=n;i++) w[i]=rd()/100.0;
dfs1(1,0);
g[1]=1;
dfs2(1,0);
printf("%.6f\n",sum);
}

BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP的更多相关文章

  1. [BZOJ3566][SHOI2014]概率充电器 换根树形DP

    链接 题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数 题解 设1为根节点 设 \(f[x]\) 表示 \(x\) ...

  2. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  3. luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp

    LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...

  4. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

  5. 【Luogu】P4284概率充电器(概率树形DP)

    题目链接 这题好神啊…… 设f[i]为i没电的概率,初始化$f[i]=1-q[i]$ 之后x的电有三个来源: 1.x自己有电 2.x的儿子给它传来了电 3.x的父亲给它传来了电 对于2和3操作分别做一 ...

  6. [SHOI2014]概率充电器(概率+换根dp)

    著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品 ...

  7. 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)

    传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...

  8. Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)

    题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...

  9. 概率专题_概率/ 数学_基础题_ABEI

    上周三讲了概率和概率dp.如果没有涉及其他综合算法,概率这种题主要是思维,先把这部分的东西写完 给个题目链接:https://vjudge.net/contest/365300#problem Hea ...

随机推荐

  1. iOS开发之分段控制器(UISegmentedControl)

    今天我们来说下iOS中的分段选择控制器UISegmentedControl,这一控件有什么作用呢 每个segment都能被点击,相当于集成了多个button 通常我们会点击不同的segment来切换不 ...

  2. from: 关于RabbitMQ

    from: http://lynnkong.iteye.com/blog/1699684 1      什么是RabbitMQ? RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种, ...

  3. NGUI版虚拟摇杆

    以下是我用nui实现的一个虚拟摇杆. 1,示图 2.代码例如以下,都有比較具体的凝视.就不说明了. using UnityEngine; using System.Collections; using ...

  4. 怎样使用Entityframework.Extended

    这个插件真的非常有用,我们能够使用下面语法来简化我们的工作,下面不过演示样例: Deleting <strong>//delete all users where FirstName ma ...

  5. 树莓派 Zero W——随身钥匙扣

    前言 原创文章,转载引用务必注明链接.水平有限,如有疏漏,欢迎指正. 本文使用Markdown写成,为获得更好的阅读体验和正确的格式显示,请访问我的博客原文: http://www.cnblogs.c ...

  6. PHP网站http替换https

      PHP网站http替换https

  7. C语言-回溯例1

    回溯法解N皇后问题 1,代码分析: 使用一个一维数组表示皇后的位置 其中数组的下标表示皇后所在的行 数组元素的值表示皇后所在的列 这样设计的棋盘,所有皇后必定不在同一行 假设前n-1行的皇后已经按照规 ...

  8. 使用 Navicat 8.0 管理mysql数据库(导出导入数据)

    http://dxcns.blog.51cto.com/1426423/367105 使用Navicat For MySql 将mysql中的数据导出,包括数据库表创建脚本和数据 (1)数据的导出:右 ...

  9. 【转】Linux上的free命令详解

    解释一下Linux上free命令的输出.默认输出是KB,可以用free -m则输出是MB 下面是free的运行结果,一共有4行.为了方便说明,我加上了列号.这样可以把free的输出看成一个二维数组FO ...

  10. 内核顶层Makefile相关3

    http://www.groad.net/bbs/simple/?f104.html 伪目标 .PHONY是一个特殊工作目标(special target),它用来指定一个假想的工作目标,也就是说它后 ...