从旅行商问题说起——

  给定一个图,n个节点(n<=15),求从a节点出发,经历每个节点仅一次,最后回到a,需要的最短时间。

分析:

  设定状态S代表当前已经走过的城市的集合,显然,S<=(1<<n)-1.

  dp[k][s]——从a走到k,已经经历过的节点集合为s,按照规则走回a所需要的最短时间。

  初始化:dp[k][s]=-1

  

int DP(int K,int S)
{
if (dp[K][S]!=-1)
{
return dp[K][S];
}
if (K==a && S==(1<<n)-1)
{
//已经走回了A,并且所有点都走过一次
return dp[K][S]=0;
}
dp[K][S]=INF;
for (int i=0;i<adj[K].size();i++)
{
//枚举K的下一个点
int v=edges[adj[K][i]].to;
int dist=edges[adj[K][i]].dist;
if (!(S>>(v-1) & 1))//如果这个点还没有走过
{
int val=DP(v,S | (1<<(v-1)));
if (val!=INF)
{
dp[K][S]=min(dp[K][S],val+dist);
}
}
}
return dp[K][S];
}

  

3.4 熟练掌握动态规划——状态压缩DP的更多相关文章

  1. [动态规划]状态压缩DP小结

     1.小技巧 枚举集合S的子集:for(int i = S; i > 0; i=(i-1)&S) 枚举包含S的集合:for(int i = S; i < (1<<n); ...

  2. 浅谈状态压缩DP

    浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...

  3. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  4. Vijos 1002 过河 状态压缩DP

    描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上 ...

  5. 状态压缩·一(状态压缩DP)

    描述 小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市——那座城市即将举行美食节! 但是不幸的是,小Hi和小Ho并没有能够买到很好的火车票—— ...

  6. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  7. 旅行商问题——状态压缩DP

    问题简介 有n个城市,每个城市间均有道路,一个推销员要从某个城市出发,到其余的n-1个城市一次且仅且一次,然后回到再回到出发点.问销售员应如何经过这些城市是他所走的路线最短? 用图论的语言描述就是:给 ...

  8. 状态压缩dp初学__$Corn Fields$

    明天计划上是要刷状压,但是作为现在还不会状压的\(ruoruo\)来说是一件非常苦逼的事情,所以提前学了一下状压\(dp\). 鸣谢\(hmq\ juju\)的友情帮助 状态压缩动态规划 本博文的大体 ...

  9. 【算法】状态压缩DP

    状态压缩DP是什么? 答:利用位运算(位运算比加减乘除都快!)来记录状态,并实现动态规划. 适用于什么问题? 答:数据规模较小:不能使用简单的算法解决. 例题: 题目描述 糖果店的老板一共有M 种口味 ...

随机推荐

  1. 爬取豆瓣Top250_Ajax动态页面

    爬取网址: 完整代码: import sys from urllib import request, parse import ssl ssl._create_default_https_contex ...

  2. CodeForces 570D DFS序 树状数组 Tree Requests

    参考九野巨巨的博客. 查询一个子树内的信息,可以通过DFS序转成线形的,从而用数据结构来维护. #include <iostream> #include <cstdio> #i ...

  3. luogu3383 【模板】线性筛素数

    如果prime[i]是k的因子,那么[k * (在prime[i]以后的质数)]等于[prime[i]*(k/prime[i])*(这个质数)],一定被筛过了,所以这里可以break. #includ ...

  4. 深入理解Java虚拟机(精华总结)

    作者:战斗民族就是干 转自:http://www.cnblogs.com/prayers/p/5515245.html 一.运行时数据区域 Java虚拟机管理的内存包括几个运行时数据内存:方法区.虚拟 ...

  5. Flowerpot(单调队列)

    描述 Farmer John has been having trouble making his plants grow, and needs your help to water them pro ...

  6. Wannafly挑战赛5

    珂朵莉与宇宙 时间限制:C/C++ 2秒,其他语言4秒空间限制:C/C++ 65536K,其他语言131072K64bit IO Format: %lld 题目描述 星神是来自宇宙的 所以珂朵莉也是吧 ...

  7. The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online

    A Live Love DreamGrid is playing the music game Live Love. He has just finished a song consisting of ...

  8. 九度oj 题目1177:查找

    题目描述: 读入一组字符串(待操作的),再读入一个int n记录记下来有几条命令,总共有2中命令:1.翻转  从下标为i的字符开始到i+len-1之间的字符串倒序:2.替换  命中如果第一位为1,用命 ...

  9. No entity found for query异常

    错误为getSingleResult();获取值时获取不到报异常. getSingleResult的源码有一句: @throws EntityNotFoundException if there is ...

  10. 项目记事【多线程】:关于 SimpledDateFormat 的多线程问题

    背景: 最近项目引入了 SonarLink,解决代码规范的问题,在检查历史代码的时候,发现了一个问题. 先看代码: public class DateUtil { private static fin ...