3.4 熟练掌握动态规划——状态压缩DP
从旅行商问题说起——
给定一个图,n个节点(n<=15),求从a节点出发,经历每个节点仅一次,最后回到a,需要的最短时间。
分析:
设定状态S代表当前已经走过的城市的集合,显然,S<=(1<<n)-1.
dp[k][s]——从a走到k,已经经历过的节点集合为s,按照规则走回a所需要的最短时间。
初始化:dp[k][s]=-1
int DP(int K,int S)
{
if (dp[K][S]!=-1)
{
return dp[K][S];
}
if (K==a && S==(1<<n)-1)
{
//已经走回了A,并且所有点都走过一次
return dp[K][S]=0;
}
dp[K][S]=INF;
for (int i=0;i<adj[K].size();i++)
{
//枚举K的下一个点
int v=edges[adj[K][i]].to;
int dist=edges[adj[K][i]].dist;
if (!(S>>(v-1) & 1))//如果这个点还没有走过
{
int val=DP(v,S | (1<<(v-1)));
if (val!=INF)
{
dp[K][S]=min(dp[K][S],val+dist);
}
}
}
return dp[K][S];
}
3.4 熟练掌握动态规划——状态压缩DP的更多相关文章
- [动态规划]状态压缩DP小结
1.小技巧 枚举集合S的子集:for(int i = S; i > 0; i=(i-1)&S) 枚举包含S的集合:for(int i = S; i < (1<<n); ...
- 浅谈状态压缩DP
浅谈状态压缩DP 本篇随笔简单讲解一下信息学奥林匹克竞赛中的状态压缩动态规划相关知识点.在算法竞赛中,状压\(DP\)是非常常见的动规类型.不仅如此,不仅是状压\(DP\),状压还是很多其他题目的处理 ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- Vijos 1002 过河 状态压缩DP
描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上 ...
- 状态压缩·一(状态压缩DP)
描述 小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市——那座城市即将举行美食节! 但是不幸的是,小Hi和小Ho并没有能够买到很好的火车票—— ...
- [转]状态压缩dp(状压dp)
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...
- 旅行商问题——状态压缩DP
问题简介 有n个城市,每个城市间均有道路,一个推销员要从某个城市出发,到其余的n-1个城市一次且仅且一次,然后回到再回到出发点.问销售员应如何经过这些城市是他所走的路线最短? 用图论的语言描述就是:给 ...
- 状态压缩dp初学__$Corn Fields$
明天计划上是要刷状压,但是作为现在还不会状压的\(ruoruo\)来说是一件非常苦逼的事情,所以提前学了一下状压\(dp\). 鸣谢\(hmq\ juju\)的友情帮助 状态压缩动态规划 本博文的大体 ...
- 【算法】状态压缩DP
状态压缩DP是什么? 答:利用位运算(位运算比加减乘除都快!)来记录状态,并实现动态规划. 适用于什么问题? 答:数据规模较小:不能使用简单的算法解决. 例题: 题目描述 糖果店的老板一共有M 种口味 ...
随机推荐
- MYSQL安装与库的基本操作
mysql数据库 什么是数据库 # 用来存储数据的仓库 # 数据库可以在硬盘及内存中存储数据 数据库与文件存储数据区别 数据库本质也是通过文件来存储数据, 数据库的概念就是系统的管理存储数据的文件 数 ...
- while True 死循环
while True 死循环示例: count = 0 #给count设置变量为0 while True: count += 1 #每循环一次,count+1 : count += 1 等同于coun ...
- Python虚拟机函数机制之参数类别(三)
参数类别 我们在Python虚拟机函数机制之无参调用(一)和Python虚拟机函数机制之名字空间(二)这两个章节中,分别PyFunctionObject对象和函数执行时的名字空间.本章,我们来剖析一下 ...
- python基础学习笔记——类的成员
一. 细分类的组成成员 之前咱们讲过类大致分两块区域,如下图所示: 每个区域详细划分又可以分为: class A: company_name = '老男孩教育' # 静态变量(静态字段) __ipho ...
- acdsee 15中文版的许可证密钥+激活方法
按以下方法就可以使用了,进入注册表的命令是:开始-运行-输入regedit 进入注册表后按下面的步骤操作就行. ACDSee15中文版激活英文版激活码5NR9CW-SSRMMY-KFWMQU-ZP ...
- Leetcode39--->Combination Sum(在数组中找出和为target的组合)
题目: 给定一个数组candidates和一个目标值target,求出数组中相加结果为target的数字组合: 举例: For example, given candidate set [2, 3, ...
- 微信小程序开发 -- 手机振动
wx.vibrateLong(OBJECT) wx.vibrateLong(OBJECT) 方法使手机发生较长时间的振动(400ms) OBJECT参数说明: 参数名 类型 必填 说明 success ...
- 设计模式(十六)迭代器模式 Iterator
什么时候需要用到迭代器模式? 有许多中方法,可以把对象堆起来放进一个集合(可以是数组.堆栈.列表.哈希表,等等). 每一种类型的集合,都有各自适用的时机.但是某个时间段,客户端可能希望去遍历这个集合. ...
- 【bzoj1690】[Usaco2007 Dec]奶牛的旅行 分数规划+Spfa
题目描述 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城市地图,上面标 ...
- HDU——1286找新朋友(欧拉函数+质数打表)
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...