矩阵儿快速幂 - POJ 3233 矩阵力量系列
不要管上面的标题的bug
那是幂的意思,不是力量。。。
POJ 3233 Matrix Power Series
描述
Given a n × n matrix A and a positive integer k, find the sum $ S = A + A^2 + A^3 + … + A^k $.
给你个n×n大小的矩阵A和一个正整数k,求矩阵S = A + A^2 + A^3 + … + A^k。
输入
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104).
输入只包含一个测试点。 第一行输入包含三个正整数n(n≤30),k(k≤10^9)和m(m <10^4)。
Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
接下来n行,每行有n个低于32,768的非负整数,描述A的组成。
输出
Output the elements of S modulo m in the same way as A is given.
把矩阵S的值按输入A的格式模上m输出。
样例
.in
2 2 4
0 1
1 1
.out
1 2
2 3
暴力求解的话要交给天河2号评测
吾等平民还是写点高效算法吧
先把那个式子拆成下面这样子:
$ \sum^k_{i=1} {A^i} = (\sum^{k'}_{i=1} {A^i}) \times {(1 + A^{k'+1})} + 2|k?A^k:0 $
然后DFS分一分合一下就好了。
代码蒯上
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gotcha()
{
register int a=0;bool b=1;register char c=getchar();
while(c>'9' || c<'0'){if(c=='-')b=0;c=getchar();}
while(c>='0' && c<='9')a=a*10+c-48,c=getchar();
return b?a:-a;
}
int n,tim,mo;
struct martix
{
int a[32][32];
martix(){memset(a,0,sizeof(a));}
const martix operator + (const martix &b)const
{
martix c;register int i,j;
for(i=1;i<=n;i++)for(j=1;j<=n;j++)
c.a[i][j]=a[i][j]+b.a[i][j],c.a[i][j]%=mo;
return c;
}
const martix operator * (const martix &b)const
{
martix c;register int i,j,k;
for(k=1;k<=n;k++)for(i=1;i<=n;i++)for(j=1;j<=n;j++)
c.a[i][j]+=a[i][k]*b.a[k][j],c.a[i][j]%=mo;
return c;
}
}ori;
martix powa(martix in,int tim)
{
if(tim==1)return in;
martix tmp;
for(int i=0;i<=n;i++)tmp.a[i][i]=1;
if(tim==0)return tmp;
while(tim){if(tim&1)tmp=in*tmp;in=in*in;tim>>=1;}
return tmp;
}
martix finder(martix now,int k)
{
if(k==1)return now;
if(k&1)return finder(now,k-1)+powa(now,k);
return (powa(now,0)+powa(now,k>>1))*finder(now,k>>1);
}
int main()
{
register int i,j;
n=gotcha(),tim=gotcha(),mo=gotcha();
for(i=1;i<=n;i++)for(j=1;j<=n;j++)ori.a[j][i]=gotcha()%mo;
ori=finder(ori,tim);
for(i=1;i<=n;i++){for(j=1;j<=n;j++)printf("%d ",ori.a[j][i]);printf("\n");}
return 0;
}
矩阵儿快速幂 - POJ 3233 矩阵力量系列的更多相关文章
- BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 【bzoj4887】:[Tjoi2017]可乐 矩阵乘法,快速幂
[bzoj4887]:[Tjoi2017]可乐 题目大意:一张无相连通图(n<=30),从1号点开始走,每秒可以走到相邻的点也可以自爆,求第t秒(t<=1e6)后所有的方案数是多少对201 ...
- codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- Poj 3233 Matrix Power Series(矩阵二分快速幂)
题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...
- poj 3233 矩阵快速幂
地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方 结果模m的相加和是多少 Given a n × n matrix A and a positive i ...
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
随机推荐
- 学习笔记:location.hash和history.pushState()
在浏览器中改变地址栏url,将会触发页面资源的重新加载,这使得我们可以在不同的页面间进行跳转,得以浏览不同的内容.但随着单页应用的增多,越来越多的网站采用ajax来加载资源.因为异步加载的特性,地址栏 ...
- Ubuntu 16.04 远程登入root 用户
安装 open ssh: sudo apt-get install openssh-server 修改 root 密码 sudo passwd root 以其他账户登录,通过 sudo nan ...
- intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP)用法
如果已经启动了四个Activity:A,B,C和D.在D Activity里,我们要跳到B Activity,同时希望C finish掉,可以在startActivity(intent)里的inten ...
- grunt + sass 使用记录
环境依赖 Nodejs for grunt Ruby for sass 配置文件 package.json { "name": "app", "ver ...
- 使用CSS设置Chrome打印背景色
以下内容适用于Chrome浏览器 打印背景色可以通过在打印预览页面勾选背景图形实现 如果需要在用户不勾选的情况下依然能够打印背景色,可以通过css实现,如,table隔行设置背景色: .data-ta ...
- SqlServer作业指定目标服务器
用SSMS生成数据库作业的创建脚本的时候,有一步是sp_add_jobserver操作: EXEC @ReturnCode = msdb.dbo.sp_add_jobserver @job_id = ...
- VMware Workstation Pro 11、12 密钥
11:1F04Z-6D111-7Z029-AV0Q4-3AEH8 12:5A02H-AU243-TZJ49-GTC7K-3C61N
- JSP开发过程遇到的中文乱码问题及解决方案
对于程序猿来说,乱码问题真的很头疼,下面列举几种常见的乱码. 1.数据库编码不一致导致乱码 解决方法: 首先查看数据库编码,输入: show variables like "%char%&q ...
- UVA 10375 Choose and divide(大数的表示)
紫上给得比较奇怪,其实没有必要用唯一分解定理.我觉得这道题用唯一分解只是为了表示大数. 但是分解得到的幂,累乘的时候如果顺序很奇怪也可能溢出.其实直接边乘边除就好了.因为答案保证不会溢出, 设定一个精 ...
- 【转】操作系统Unix、Windows、Mac OS、Linux的故事
电脑,计算机已经成为我们生活中必不可少的一部分.无论是大型的超级计算机,还是手机般小巧的终端设备,都跑着一个操作系统.正是这些操作系统,让那些硬件和芯片得意组合起来,让那些软件得以运行,让我们的世界在 ...