矩阵儿快速幂 - POJ 3233 矩阵力量系列
不要管上面的标题的bug
那是幂的意思,不是力量。。。
POJ 3233 Matrix Power Series
描述
Given a n × n matrix A and a positive integer k, find the sum $ S = A + A^2 + A^3 + … + A^k $.
给你个n×n大小的矩阵A和一个正整数k,求矩阵S = A + A^2 + A^3 + … + A^k。
输入
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104).
输入只包含一个测试点。 第一行输入包含三个正整数n(n≤30),k(k≤10^9)和m(m <10^4)。
Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
接下来n行,每行有n个低于32,768的非负整数,描述A的组成。
输出
Output the elements of S modulo m in the same way as A is given.
把矩阵S的值按输入A的格式模上m输出。
样例
.in
2 2 4
0 1
1 1
.out
1 2
2 3
暴力求解的话要交给天河2号评测
吾等平民还是写点高效算法吧
先把那个式子拆成下面这样子:
$ \sum^k_{i=1} {A^i} = (\sum^{k'}_{i=1} {A^i}) \times {(1 + A^{k'+1})} + 2|k?A^k:0 $
然后DFS分一分合一下就好了。
代码蒯上
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gotcha()
{
register int a=0;bool b=1;register char c=getchar();
while(c>'9' || c<'0'){if(c=='-')b=0;c=getchar();}
while(c>='0' && c<='9')a=a*10+c-48,c=getchar();
return b?a:-a;
}
int n,tim,mo;
struct martix
{
int a[32][32];
martix(){memset(a,0,sizeof(a));}
const martix operator + (const martix &b)const
{
martix c;register int i,j;
for(i=1;i<=n;i++)for(j=1;j<=n;j++)
c.a[i][j]=a[i][j]+b.a[i][j],c.a[i][j]%=mo;
return c;
}
const martix operator * (const martix &b)const
{
martix c;register int i,j,k;
for(k=1;k<=n;k++)for(i=1;i<=n;i++)for(j=1;j<=n;j++)
c.a[i][j]+=a[i][k]*b.a[k][j],c.a[i][j]%=mo;
return c;
}
}ori;
martix powa(martix in,int tim)
{
if(tim==1)return in;
martix tmp;
for(int i=0;i<=n;i++)tmp.a[i][i]=1;
if(tim==0)return tmp;
while(tim){if(tim&1)tmp=in*tmp;in=in*in;tim>>=1;}
return tmp;
}
martix finder(martix now,int k)
{
if(k==1)return now;
if(k&1)return finder(now,k-1)+powa(now,k);
return (powa(now,0)+powa(now,k>>1))*finder(now,k>>1);
}
int main()
{
register int i,j;
n=gotcha(),tim=gotcha(),mo=gotcha();
for(i=1;i<=n;i++)for(j=1;j<=n;j++)ori.a[j][i]=gotcha()%mo;
ori=finder(ori,tim);
for(i=1;i<=n;i++){for(j=1;j<=n;j++)printf("%d ",ori.a[j][i]);printf("\n");}
return 0;
}
矩阵儿快速幂 - POJ 3233 矩阵力量系列的更多相关文章
- BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 【bzoj4887】:[Tjoi2017]可乐 矩阵乘法,快速幂
[bzoj4887]:[Tjoi2017]可乐 题目大意:一张无相连通图(n<=30),从1号点开始走,每秒可以走到相邻的点也可以自爆,求第t秒(t<=1e6)后所有的方案数是多少对201 ...
- codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- Poj 3233 Matrix Power Series(矩阵二分快速幂)
题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...
- poj 3233 矩阵快速幂
地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方 结果模m的相加和是多少 Given a n × n matrix A and a positive i ...
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
随机推荐
- 常用的Homebrew命令
一些常用的Homebrew命令: 更新:brew update 安装包信息检索:brew info 安装包搜索:brew search foo 安装包列表:brew list 过时信息:brew ou ...
- Java 中 Double 相关问题
在项目当中,对于double类型数据的使用比较频繁.尤其是处理金钱相关的数据,在使用Double类型的数据时,涉及到精度,显示,四舍五入等等问题. 1. 显示问题,当double 数据 小于 0.0 ...
- HDU3577 线段树(区间更新)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3577 ,普通的线段树区间更新题目,较简单. 相当于一个区间覆盖问题,有一点要注意的就是叶子节点是一个长 ...
- tomcat 启动显示指定的服务未安装
解决方法: 命令行进入tomcat的bin目录 输入“service.bat install” 重启,OK
- python_33_文件操作2
f=open('yesterday',encoding='utf-8') #print(f.readline())#读一行,并且是第一行 #读前5行 for i in range(5):#range( ...
- [solr 管理界面] - 索引数据删除
删除solr索引数据,使用XML有两种写法: 1) <delete><id>1</id></delete> <commit/> 2) < ...
- Solaris&&QNX® Neutrino®&&OpenVMS&&FreeBSD&&AIX
原文链接Solaris (读作 /se'laris:/ 或者 /so'le:ris/ 或者 '梭拉瑞斯' )是Sun Microsystems研发的计算机 操作系统.它被认为是UNIX操作系统的衍生版 ...
- java设计模式——单例模式(三)
容器单例模式 之前学习Structs2,Spring框架时,经常会听到单例,多例.虽然这与单例模式不太一样,但是都很类似.在程序运行的时候,就加载所有的实例,然后用的时候直接取出 看下面代码: /** ...
- 64位系统InlineHook
APIHook64Class.h #ifndef APIHOOK64CLASS_H_ #define APIHOOK64CLASS_H_ #include <Windows.h> clas ...
- eclipse中使用git上传项目
eclipse中使用git上传项目 先需要上传到本地仓库 先找到此选项打钩 再如下 再添加的属性则可以自动填充邮箱和密码 之后 右键选择import 点击找到git 选中 下一步 如果没有找到git ...