https://www.luogu.org/problemnew/show/P2568

统计n以内gcd为质数的数的个数。

求 \(\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p]\)

一开始还以为要莫比乌斯反演.

推了半天不知道怎么求,遂看题解:

$\sum\limits_p \sum\limits_{i=1}{n}\sum\limits_{j=1}{n} [gcd(i,j)p] =\sum\limits_p \sum\limits_{i=1}{\frac{n}{p}}\sum\limits_{j=1}{\frac{n}{p}} [gcd(i,j)1] $

一个有序数对 \((i,j),(i>j)\) 与 \(i\) 互质的数 \(j\) 的个数也就是 \(\varphi(i)\) ,画一个正方形可以知道对调 \((i,j)\) 求出一样的结果.

但是当 $ i1&&j1 $ 时被重复计数了,要减去

那么答案就是 $\sum\limits_p (2*\sum\limits_{i=1}^{\frac{n}{p}}\varphi(i) - 1) $


#include<bits/stdc++.h>
using namespace std;
#define ll long long #define N 10000005 int phi[N],pri[N],cntpri=0;
bool notpri[N]; ll prefix[N]; void sieve_phi(int n) {
notpri[1]=phi[1]=1;
prefix[0]=0;
prefix[1]=1;
for(int i=2; i<=n; i++) {
if(!notpri[i])
pri[++cntpri]=i,phi[i]=i-1;
for(int j=1; j<=cntpri&&i*pri[j]<=n; j++) {
notpri[i*pri[j]]=1;
if(i%pri[j])
phi[i*pri[j]]=phi[i]*phi[pri[j]];
else {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
}
prefix[i]=prefix[i-1]+phi[i];
}
} ll solve(ll n){
ll ans=0;
for(int i=1;i<=cntpri;i++){
if(pri[i]<=n){
ans+=2ll*(prefix[n/pri[i]])-1ll;
}
}
return ans;
} int main() {
sieve_phi(10000000+1);
int n;
while(cin>>n) {
ll ans=solve(n);
cout<<ans<<endl;
}
}

洛谷 - P2568 - GCD - 欧拉函数的更多相关文章

  1. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  2. 洛谷 - P2158 - 仪仗队 - 欧拉函数

    https://www.luogu.org/problemnew/show/P2158 好像以前有个妹子收割铲也是欧拉函数. 因为格点直线上的点,dx与dy的gcd相同,画个图就觉得是欧拉函数.但是要 ...

  3. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  4. 洛谷 P2568 GCD

    https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x, ...

  5. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  6. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  7. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  8. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  9. BZOJ2818: Gcd 欧拉函数求前缀和

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...

随机推荐

  1. shell脚本定时任务 ( linux系统)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGV5YW5nanVu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  2. SegmentFault 巨献 1024 程序猿游戏「红岸的呼唤」第二天任务攻略

    眼看实验室就要关门了.走之前写一下解题过程(事实上大家都等着第三题出来吧大概-=). 高速传送门:http://segmentfault.com/game/2 那么接昨天的博客,今天的题目是这种: 完 ...

  3. 51NOD 1810 连续区间 分治 区间计数

    1810 连续区间 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 80     区间内所有元素排序后,任意相邻两个元素值差为1的区间称为“连续区间” 如:3,1,2是连续区间,但3, ...

  4. EasyDarwin开源流媒体服务器提供的TS切片/HLS直播打包库

    EasyHLS  Github:https://github.com/EasyDarwin/EasyHLS EasyHLS是什么? EasyHLS是EasyDarwin开源流媒体社区开发的一款HLS打 ...

  5. SpringBoot-(3)-RestController接口参数

    一,无参接口: //无参接口 @RequestMapping("/appSecret") public String secret() { return "EK125EK ...

  6. PAT 天梯赛 L1-050. 倒数第N个字符串 【字符串】

    题目链接 https://www.patest.cn/contests/gplt/L1-050 思路 因为是求倒数 我们不如直接 倒过来看 令 zzz 为第一个字符串 我们可以理解为 十进制 转换为 ...

  7. 7-12 畅通工程之最低成本建设问题(30 point(s)) 【PRIME】

    7-12 畅通工程之最低成本建设问题(30 point(s)) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出"畅通工程"的目标:使整个地区任何两个城镇间 ...

  8. linux iptables:安全应用,防火墙

    iptables:安全应用,防火墙 windows和linux都有防火墙,企业的边缘会部署防火墙保证企业内部的局域网是安全的.针对个人电脑会有防火墙保证系统是安全的. 防火墙是唯一通道. 防火墙分类( ...

  9. Oracle序列更新为主键最大值

    我们在使用 Oracle 数据库的时候,有时候会选择使用自增序列作为主键.但是在开发过程中往往会遇到一些不规范的操作,导致表的主键值不是使用序列插入的.这样在数据移植的时候就会出现各种各样的问题.当然 ...

  10. jni native macOS

    参考自:http://mrjoelkemp.com/2012/01/getting-started-with-jni-and-c-on-osx-lion/ 1 ,创建HelloWorld,如: 说明: ...