题目描述:Catcher是MCA国的情报员,他工作时发现敌国会用一些对称的密码进行通信,比如像这些ABBA,ABA,A,123321,但是他们有时会在开始或结束时加入一些无关的字符以防止别国破解。比如进行下列变化 ABBA->12ABBA,ABA->ABAKK,123321->51233214 。因为截获的串太长了,而且存在多种可能的情况(abaaab可看作是aba,或baaab的加密形式),Cathcer的工作量实在是太大了,他只能向电脑高手求助,你能帮Catcher找出最长的有效密码串吗?

输入描述:输入一个字符串

输出描述:返回有效密码串的最大长度

输入例子:

ABBA

输出例子:

4

思路:最长回文串的长度

Manacher算法O(n)

因为对于偶回文,是需要从虚轴扩充,ab,ba,所以如下:

先把原字符串处理,都加上一个标记符,比如#(特殊字符任何都可以,对于计算结果不会有影响)

1221-->#1#2#2#1#

121-->#1#2#1#

按照处理后的字符串求它的最长回文串长度m,所以原始字符串最长子回文串的长度是m/2

变量:

1:PArra[] 存放回文半径:某个位置能扩充的回文半径的长度,例如 #1#2#2#1#,2位置PArra[3] = 4

2:int PR 能够扫到的最右的回文的位置   #1#2#1# 在位置3   PR = 6

3:int  index   当 PR更新的时候,index也要更新,指向当前最中心的位置   2中index=3

过程:

当要求位置i的时候的回文半径   分析如下:

1:第一种情况可以直接确定i的回文半径,PR不变,因为没有扩

2:第二种情况,i'的左边在index左边的左边,PR不用变化,(没有扩)也可以直接确定i位置的回文半径

3:第三种情况,i'的左边喝index的左边重复,需要从  “右大位置开始继续扩”

如何算复杂度:

如果扩成功了,说明,超过了目前的右大更新PR

4:第四种情况必须暴力扩

每一次检查的时候,要么失败,要么成功扩,只要成功扩了,PR必须更新,而且最长扩也就2n,所以“扩”的动作和PR高度相关;

通过变量优化这个算法的时候,一般这个复杂度和这个变量的增量有关。

 import java.util.Scanner;

 public class Main {

     public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while(in.hasNextLine())
{
String input = in.nextLine();
char[] inputChar = input.toCharArray();
StringBuilder sb = new StringBuilder();
sb.append("#");
//重新构造原来字符串
for(int i = 0; i < input.length(); i++)
{
sb.append(inputChar[i]);
sb.append("#");
}
int length = sb.length();
char[] newChar = new char[length];//
int pArray[] = new int[length];//记录以每个新的字符为中心的最大回文串长度
newChar = sb.toString().toCharArray();
int pr = 0;//当前回文串最右边的字符的下标,同时也是一个最大值,因为每一次针对i位置的回文串长度都可以利用上一步的结果,所以pr一直在增加
int index = 0;//当前回文串的中间值下标
int count = 0;//记录最大回文
for(int i = 0; i< newChar.length; i++)
{
//如果i位置在当前pr之内(左边),可以不用扩充,直接得知i位置的最长回文串
if(pr > i)
{
//两个参数代表两种情况,一种i对应index的左边的i'的回文串最左在index最左的左边,一种是在右边
pArray[i] = Math.min(pArray[2*index - i], pr-i);
}
//否则初始化为1
else
{
pArray[i] = 1;
}
//到位置i,往前往后判断是否是回文,不断更新pArray[i]
while(i-pArray[i] >= 0 && i+pArray[i] < newChar.length && newChar[i-pArray[i]] == newChar[i+pArray[i]])
{
pArray[i]++;
}
//更新最右下标和index
if(pr<i+pArray[i])
{
pr = i+pArray[i];
index = i;
}
count = Math.max(count, pArray[i]-1);
}
System.out.println(count);
}
} }

37:密码截取(回文串manacher算法)的更多相关文章

  1. luoguP4555 [国家集训队]最长双回文串 manacher算法

    不算很难的一道题吧.... 很容易想到枚举断点,之后需要处理出以$i$为开头的最长回文串的长度和以$i$为结尾的最长回文串的长度 分别记为$L[i]$和$R[i]$ 由于求$R[i]$相当于把$L[i ...

  2. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  3. 最长回文---hdu3068 (回文串 manacher 算法模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意很清楚:就是求一个串s的子串中最长回文串的长度:这类题用到了manacher算法 #incl ...

  4. 【BZOJ2565】最长双回文串 (Manacher算法)

    题目: BZOJ2565 分析: 首先看到回文串,肯定能想到Manacher算法.下文中字符串\(s\)是输入的字符串\(str\)在Manacher算法中添加了字符'#'后的字符串 (构造方式如下) ...

  5. UESTC-1975弗吉桑(回文串,manacher算法)

    弗吉桑 Time Limit: 3000 MS     Memory Limit: 64 MB Submit Status 弗吉桑是一座横跨清水河大草原的活火山,位于子科技大学主楼东北方约 80km ...

  6. 回文串--Manacher算法(模板)

    用途:在O(n)时间内,求出以每一个点为中心的回文串长度. 首先,有一个非常巧妙的转化.由于回文串长度有可能为奇数也有可能为偶数,说明回文中心不一定在一个字符上.所以要将字符串做如下处理:在每两个字母 ...

  7. HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...

  8. Palindrome(最长回文串manacher算法)O(n)

     Palindrome Time Limit:15000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  9. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

随机推荐

  1. 【转】 #define用法详解

    #define用法详解   1.#define 的作用 在C或C++语言源程序中允许用一个标识符来表示一个字符串,称为“宏”.被定义为“宏”的标识符称为“宏名”.在编译预处理时,对程序中所有出现的“宏 ...

  2. token防止重复提交

    Token,可以翻译成标记!最大的特点就是随机性,不可预测,一般黑客或软件无法猜测出来. Token一般用在两个地方: 1: 防止表单重复提交 2: anti csrf攻击(Cross-site re ...

  3. 【12】vue-router 之路由重定向

    看之前的项目,突然发现一个不算bug的bug,之前也是一直没有想到,现在发现之后越来越觉得有必要改掉, 项目用的是vue做的,自然切换用的就是路由,一级路由包括:首页.记录和个人中心,二级路由是在记录 ...

  4. 向量内积(bzoj 3243)

    Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...

  5. TJOI2015题解

    (转载前请标明出处,谢谢) 打算来做一波TJOI2015,来写题解啦! Day1: T1:[bzoj3996] 题目链接:http://www.lydsy.com/JudgeOnline/proble ...

  6. 【Educational Codeforces Round 53 (Rated for Div. 2)】

    A:https://www.cnblogs.com/myx12345/p/9853775.html B:https://www.cnblogs.com/myx12345/p/9853779.html ...

  7. VS扩展工具

    原文发布时间为:2011-03-09 -- 来源于本人的百度文章 [由搬家工具导入] http://visualstudiogallery.msdn.microsoft.com/site/search ...

  8. 为什么mfc的入口是InitInstance()而没有WinMain() (转)

    学过PE文件格式,就明白,程序在进入WinMain之前要做很多事情,比如初始Dos头,分配函数表,初始化全局变量,之后才进入程序入口(WinMain) MFC对WindowsAPI进行了封装.在用向导 ...

  9. 《Linux命令行与shell脚本编程大全 第3版》Linux命令行---41

    以下为阅读<Linux命令行与shell脚本编程大全 第3版>的读书笔记,为了方便记录,特地与书的内容保持同步,特意做成一节一次随笔,特记录如下:

  10. 九、 Java程序初始化的顺序(二)

    之前的一篇博客里我写了关于在一个类中的程序初始化顺序,但是在Java的面向对象里,类之间还存在着继承的关系.所以关于程序的初始化顺序,我们可以再细划分为:父类静态变量,父类的静态代码块,父类构造器,父 ...