6498: Xor Sum

时间限制: 1 Sec  内存限制: 128 MB
提交: 27  解决: 13
[提交][状态][讨论版][命题人:admin]

题目描述

You are given a positive integer N. Find the number of the pairs of integers u and v (0≤u,v≤N) such that there exist two non-negative integers a and b satisfying a xor b=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 109+7.

Constraints
1≤N≤1018

输入

The input is given from Standard Input in the following format:
N

输出

Print the number of the possible pairs of integers u and v, modulo 109+7.

样例输入

3

样例输出

5

提示

The five possible pairs of u and v are:
u=0,v=0 (Let a=0,b=0, then 0 xor 0=0, 0+0=0.)
u=0,v=2 (Let a=1,b=1, then 1 xor 1=0, 1+1=2.)
u=1,v=1 (Let a=1,b=0, then 1 xor 0=1, 1+0=1.)
u=2,v=2 (Let a=2,b=0, then 2 xor 0=2, 2+0=2.)
u=3,v=3 (Let a=3,b=0, then 3 xor 0=3, 3+0=3.)

按位考虑,因为a xor b = <=a+b,实际上只需要考虑a+b<=n,
但是要求a的每一位不大于b的每一位(关键点,否则u,v会有重复),那么对于两组不同的(a1,b1)和(a2,b2),
如果a1 xor b1等于a2 xor b2,则异或值均为零,
这表明每种(a,b)的取法都会导致不同的(a xor b,a+b)。
 
解法:记dp[i]为满足a+b<=i的(a,b)对的个数,枚举a和b的最低位,记a=2a1+a2,b=2b1+b2,其中a2,b2=0,1且a2<=b2,
那么有a1+b1<=(n-a2-b2)/2,因为a2+b2只能是0,1,2,则有dp[i]=dp[i/2]+dp[(i-1)/2]+dp[(i-2)/2],
那么对于dp[n],可以分析出需要计算的状态数是O((logn)^2)的。
此处对map的用法要熟悉,否则在时间和空间上都会爆!
AC代码:

#include<bits/stdc++.h>
using namespace std;
const long long mod=1e9+7;
map<long long ,long long>dp;
long long solve(long long x)
{
if(dp[x])
{
return dp[x];
}
else
{
return dp[x]=((solve(x/2)+solve((x-1)/2)+solve((x-2)/2)))%mod;
}
}
int main()
{
dp[0]=1;
dp[1]=2;
long long n;
cin>>n;
cout<<solve(n)<<endl;
return 0;
}

Xor Sum的更多相关文章

  1. HDU 4825 Xor Sum(经典01字典树+贪心)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  2. 字典树-百度之星-Xor Sum

    Xor Sum Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheu ...

  3. HDU 4825 Xor Sum 字典树+位运算

    点击打开链接 Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) ...

  4. 2014百度之星第三题Xor Sum(字典树+异或运算)

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Total ...

  5. Xor Sum 01字典树 hdu4825

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)Total S ...

  6. hdu 4825 Xor Sum (01 Trie)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 题面: Xor Sum Time Limit: 2000/1000 MS (Java/Others) ...

  7. HDU--4825 Xor Sum (字典树)

    题目链接:HDU--4825 Xor Sum mmp sb字典树因为数组开的不够大一直wa 不是报的 re!!! 找了一下午bug 草 把每个数转化成二进制存字典树里面 然后尽量取与x这个位置上不相同 ...

  8. hdu 4825 Xor Sum trie树

    Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others) Proble ...

  9. hdu 4825 Xor Sum(trie+贪心)

    hdu 4825 Xor Sum(trie+贪心) 刚刚补了前天的CF的D题再做这题感觉轻松了许多.简直一个模子啊...跑树上异或x最大值.贪心地让某位的值与x对应位的值不同即可. #include ...

  10. UVALive4682 XOR Sum

    UVALive4682 XOR Sum 题意 给定一个数组, 求连续子序列中异或值最大的值. 题解 假设答案区间为 [L, R], 则答案为 XOR[L, R], 可以将区间分解为 XOR[L,R] ...

随机推荐

  1. Python服务Debian打包新思路

    此文已由作者张耕源授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. Debian 打包一直是比较冷僻的技术,大部分同学都不会接触到它. 但是我们 Debian 服务器上安装的各 ...

  2. h5模型文件转换成pb模型文件

      本文主要记录Keras训练得到的.h5模型文件转换成TensorFlow的.pb文件 #*-coding:utf-8-* """ 将keras的.h5的模型文件,转换 ...

  3. uoj#308. 【UNR #2】UOJ拯救计划(并查集)

    传送门 如果把答案写出来,就是\(\sum_{i=1}^ki!\times {k\choose i}\times f_i\),其中\(f_i\)为选\(i\)种颜色方案 发现如果\(i\geq 3\) ...

  4. [Xcode 实际操作]六、媒体与动画-(4)使用CoreImage框架更改图片的色相

    目录:[Swift]Xcode实际操作 本文将演示如何使用CoreImage框架,调整图片的色相. 通过调整图像的色相,使图像产生暖色效果. 在项目导航区,打开视图控制器的代码文件[ViewContr ...

  5. [Xcode 实际操作]六、媒体与动画-(17)使用MediaPlayer框架播放视频

    目录:[Swift]Xcode实际操作 本文将演示视频的播放功能. 在项目名称上点击鼠标右键,弹出右键菜单, 选择[Add Files to "DemoApp"],往项目中导入文件 ...

  6. 总结 Sublime Text 3 无法安装 Package Control 插件的解决办法

    Sublime Text 是一款非常好用的轻便的编辑器,可以安装很多插件,实现IDE的很多功能,着实是程序员的利器. 我安装的 Sublime Text 3 Build 3143 ,软件汉化,软件激活 ...

  7. Windwos10环境下的Geany的安装与新手使用

    相信学习Python的小伙伴都会接触到Geany这个轻量级的python文本编辑器吧,下面就是我对于安装Geany的一些小经验分享. 1:安装geany很简单,进入geany官网download下载相 ...

  8. JQuery Easyui/TopJUI 用JS创建数据表格并实现增删改查功能

    JQuery Easyui/TopJUI 用JS创建数据表格并实现增删改查功能 html <table id="productDg"></table> &l ...

  9. NET Core容器

    NET Core容器化之多容器应用部署@Docker-Compose   1.引言 紧接上篇.NET Core容器化@Docker,这一节我们先来介绍如何使用Nginx来完成.NET Core应用的反 ...

  10. eShopOnContainers(一)

    微软微服务架构eShopOnContainers(一) 为了推广.Net Core,微软为我们提供了一个开源Demo-eShopOnContainers,这是一个使用Net Core框架开发的,跨平台 ...