题目链接:https://vjudge.net/problem/UVA-10655

题意:

a+b、ab的值分别为p、q,求a^n+b^n。

题解:

1.a、b未知,且直接求出a、b也不太实际。

2.看到 a^n+b^n 这个式子就想到二阶齐次递推式的通项公式,然后就想是否能通过通项公式反推回递推式。结果发现a、b的值是不能确定是否相等的,而求二阶齐次递推式的通项公式时,是需要根据根的情况来分类求解的,所以此题不适应。

3.那么,就直接对 a^n+b^n 做一下变形:

4.得到递推式之后,就直接构造矩阵,然后快速幂。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j];
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int main()
{
LL p, q, n, f[];
while(scanf("%lld%lld%lld", &p,&q,&n)==)
{
f[] = ; f[] = p;
if(n<=)
{
printf("%lld\n", f[n]);
continue;
} MA s;
memset(s.mat, , sizeof(s.mat));
s.mat[][] = p; s.mat[][] = -q;
s.mat[][] = ; s.mat[][] = ; s = qpow(s, n-);
LL ans = 1LL*s.mat[][]*f[] + 1LL*s.mat[][]*f[];
printf("%lld\n", ans);
}
}

UVA10655 Contemplation! Algebra —— 推公式、矩阵快速幂的更多相关文章

  1. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  2. HDU6050: Funny Function(推公式+矩阵快速幂)

    传送门 题意 利用给出的式子求\(F_{m,1}\) 分析 直接推公式(都是找规律大佬) \(n为偶数,F_{m,1}=\frac{2(2^n-1)^{m-1}}3\) \(n为奇数,F_{m,1}= ...

  3. hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...

  4. [HDOJ2604]Queuing(递推,矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...

  5. hdu 6185 递推+【矩阵快速幂】

    <题目链接> <转载于 >>> > 题目大意: 让你用1*2规格的地毯去铺4*n规格的地面,告诉你n,问有多少种不同的方案使得地面恰好被铺满且地毯不重叠.答案 ...

  6. HDU - 2604 Queuing(递推式+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  8. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  9. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

随机推荐

  1. Eventbus 使用方法和原理分析

    对于 Eventbus ,相信很多 Android 小伙伴都用到过. 1.创建事件实体类 所谓的事件实体类,就是传递的事件,一个组件向另一个组件发送的信息可以储存在一个类中,该类就是一个事件,会被 E ...

  2. 具体一些的博弈论 sqrstone

    Description 你有n个盒子用来放石头,每个盒子都有最大容量与初始的石头数, 两个人轮流放石头,每次必须选择一个盒子往里放数量不超过当前盒子中石头数的平方的石头 比如一个盒子当前有3个石头,你 ...

  3. JavaScript的变量:变量提升

    JavaScript代码的运行规则 在JavaScript代码运行之前其实是有一个编译阶段的.编译之后才是从上到下,一行一行解释执行.这样一来也给初学者造成很大的误解.初学者会觉得JavaScript ...

  4. mac下mysqldump找不到命令

    之所以会出现MySQL或者mysqldump这样的命令找不到, 我们可以打开/usr/bin文件夹,发现bin目录中并没有mysql打头的UEF文件, 而在/usr/local/mysql/bin中可 ...

  5. SilverLight:布局(2)GridSplitter(网格分割)垂直分割、水平分割

    ylbtech-SilverLight-Layout: 布局(2)GridSplitter(网格分割)垂直分割.水平分割 A, Splitter(分割)对象之 GridSplitter(网格分割)1: ...

  6. c++中.dll与.lib文件的生成与使用的详解

    两种库: • 包含了函数所在的DLL文件和文件中函数位置的信息(入口),代码由运行时加载在进程空间中的DLL提供,称为动态链接库dynamic link library.• 包含函数代码本身,在编译时 ...

  7. 改变其他iframe的src

    window.parent.$("#ifr").location="????";);来改变

  8. CentOS Linux搭建独立SVN Server全套流程(转)

    环境为centos6.3 1.首先 看看机器上安装了svn了没有 rpm -qa |grep svn 2.如果没有安装 执行 yum -y install subversion 3.安装好了之后 新建 ...

  9. 微信热补丁 Tinker 的实践演进之路

    http://dev.qq.com/topic/57ad7a70eaed47bb2699e68e http://dev.qq.com/topic/57a30878ac3a1fb613dd40eb ht ...

  10. Kuebernetes之DaemonSet

    系列目录 DaemonSet确保集群中每个(部分)node运行一份pod副本,当node加入集群时创建pod,当node离开集群时回收pod.如果删除DaemonSet,其创建的所有pod也被删除,D ...