Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理
题目链接:http://codeforces.com/contest/340/problem/E
1 second
256 megabytes
standard input
standard output
Iahub is so happy about inventing bubble sort graphs that he's staying all day long at the office and writing permutations. Iahubina is angry that she is no more important for Iahub. When Iahub goes away, Iahubina comes to his office and sabotage his research
work.
The girl finds an important permutation for the research. The permutation contains n distinct integers a1, a2,
..., an (1 ≤ ai ≤ n).
She replaces some of permutation elements with -1 value as a revenge.
When Iahub finds out his important permutation is broken, he tries to recover it. The only thing he remembers about the permutation is it didn't have any fixed point. A fixed point for a permutation is an element ak which
has value equal to k (ak = k).
Your job is to proof to Iahub that trying to recover it is not a good idea. Output the number of permutations which could be originally Iahub's important permutation, modulo 1000000007 (109 + 7).
The first line contains integer n (2 ≤ n ≤ 2000).
On the second line, there are n integers, representing Iahub's important permutation after Iahubina replaces some values with -1.
It's guaranteed that there are no fixed points in the given permutation. Also, the given sequence contains at least two numbers -1 and each positive number occurs in the sequence at most once. It's guaranteed that there is at least one suitable permutation.
Output a single integer, the number of ways Iahub could recover his permutation, modulo 1000000007 (109 + 7).
5
-1 -1 4 3 -1
2
For the first test example there are two permutations with no fixed points are [2, 5, 4, 3, 1] and [5, 1, 4, 3, 2]. Any other permutation would have at least one fixed point.
题意:
给出大小为n的序列,如果a[i] = k (1<=k<=n),则表明i位置被数字k占领了,如果a[i] = -1,则表明这个数字没有被占领。问:在这种情况下,有多少种错排方式?(题目输入保证有错排)
题解:
1.利用容斥原理计算出非法排列的个数, 非法排列即为至少有一个数是放在原位的, 即a[i] = i。
2.用全排列的个数减去非法排列的个数,即为答案。
容斥原理分析:
1.设m为空位数, k为可以放回原位的个数。
2.枚举可以放回原位的数的个数i,然后再对剩下可放的数进行排列。通式: C(k, i)*A(m-i, m-i):
2.1.当a需要放回原位时(其他有没放回原位不考虑), 那么剩下的数的排列有A(m-1, m-1); 对于 b、c等等, 也如此, 所以总数为C(k,1) * A(m-1, m-1); 根据容斥原理,奇数个时加上。
2.2.当a和b都需要放回原位时(其他有没放回原位不考虑), 那么剩下的数的排列有A(m-2, m-2);对于其他的两两组合也是一样, 所以总数为 C(k,2) * A(m-2, m-2); 根据容斥原理, 偶数个时减去。
2.3. 3个、4个、5个 …… k个。奇数个时加, 偶数个时减。
易错点:
1.凡是带有除法的式子, 都不能直接求模。
2.求模时, 若是加上负数, 需要: ans = (ans + mod)% mod 。
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 2e3+; bool val[maxn], pos[maxn];
LL C[maxn][maxn], A[maxn]; void init()
{
A[] = ; C[][] = ;
for(int i = ; i<maxn; i++)
{
A[i] = (1LL*i*A[i-])%mod;
C[i][] = ;
for(int j = ; j<=i; j++)
C[i][j] = (C[i-][j-] + C[i-][j])%mod;
}
} int main()
{
init();
int n, m, k;
while(scanf("%d",&n)!=EOF)
{
for(int i = ; i<=n; i++)
{
int x;
scanf("%d",&x);
if(x!=-)
val[x] = pos[i] = ;
} k = m = ;
for(int i = ; i<=n; i++)
{
if(!pos[i]) m++;
if(!pos[i] && !val[i]) k++;
} LL ans = A[m];
for(int i = ; i<=k; i++)
{
LL tmp = (1LL*C[k][i]*A[m-i])%mod;
ans -= (i&)?tmp:-tmp; //容斥原理
ans = (ans+mod)%mod;
}
cout<<ans<<endl;
}
}
Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理的更多相关文章
- Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*
D. Iahub and Xors Iahub does not like background stories, so he'll tell you exactly what this prob ...
- Codeforces Round #198 (Div. 2)A,B题解
Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...
- Codeforces Round #485 (Div. 2) E. Petr and Permutations
Codeforces Round #485 (Div. 2) E. Petr and Permutations 题目连接: http://codeforces.com/contest/987/prob ...
- Codeforces Round #198 (Div. 2)
A.The Wall 题意:两个人粉刷墙壁,甲从粉刷标号为x,2x,3x...的小块乙粉刷标号为y,2y,3y...的小块问在某个区间内被重复粉刷的小块的个数. 分析:求出x和y的最小公倍数,然后做一 ...
- Codeforces Round #198 (Div. 2)E题解
E. Iahub and Permutations Iahub is so happy about inventing bubble sort graphs that he's staying all ...
- Codeforces Round #198 (Div. 1 + Div. 2)
A. The Wall 求下gcd即可. B. Maximal Area Quadrilateral 枚举对角线,根据叉积判断顺.逆时针方向构成的最大面积. 由于点坐标绝对值不超过1000,用int比 ...
- Codeforces Round #198 (Div. 2) D. Bubble Sort Graph (转化为最长非降子序列)
D. Bubble Sort Graph time limit per test 1 second memory limit per test 256 megabytes input standard ...
- [置顶] Codeforces Round #198 (Div. 1)(A,B,C,D)
http://codeforces.com/contest/341 赛后做的虚拟比赛,40分钟出了3题,RP爆发. A计数问题 我们可以对每对分析,分别对每对<a, b>(a走到b)进行统 ...
- Codeforces Round #198 (Div. 2) 340C
C. Tourist Problem time limit per test 1 second memory limit per test 256 megabytes input standard i ...
随机推荐
- 信息收集渠道:文本分享类网站Paste Site
信息收集渠道:文本分享类网站Paste Site Paste Site是一种专门的文本分享的网站.用户可以将一段文本性质的内容(如代码)上传到网站,然后通过链接分享给其他用户.这一点很类似于现在的优酷 ...
- UPLINK口
为什么我买的交换机没有UPLINK口? UPLINK端口的作用是为了解决网络设备互连时的网线(交叉线和直通线)的使用问题.现在新出的交换机有的是没有UPLINK口的,没有UPLINK口的交换机的每个端 ...
- Myeclipse 出现了Could not generate DH keypair 错误
在myeclipse下安装svn插件,出现了Could not generate DH keypair,这么一个错误. 这个问题困扰了我半天时间,各种百度也找不到答案,或许是百度能力问题吧.百度出来的 ...
- 【spring cloud】spring cloud子module的pom文件添加依赖,出现unknown问题【maven】
spring cloud项目,一般都是父项目中有多个子服务,也就是子module模块. 如下图: 问题描述:在父项目中引用了常用的jar包,例如,引入了spring boot的依赖,那么在子项目中引入 ...
- iOS -- 设置label的自适应
- (void)AutoLabel { //准备工作 self.font = [UIFont systemFontOfSize:]; self.textColor = [UIColor whiteCo ...
- construct-binary-tree-from-preorder-and-inorder-traversal——前序和中序求二叉树
Given preorder and inorder traversal of a tree, construct the binary tree. Note: You may assume tha ...
- PHP读取远程文件的4种方法
1. fopen, fread1 if($file = fopen("http://www.example.com/", "r")) {2 while(!feo ...
- 【CODEFORCES】 B. Dreamoon and Sets
B. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input standard ...
- vs2010音频文件压缩 调用lame_enc.dll将WAV格式转换成MP3
/* //My_lame.h */ #pragma once#include "stdafx.h"#include <windows.h>#include <st ...
- Apcahe Shiro学习笔记(二):通过JDBC进行权限控制
一.概述: 官方对Realm(领域)的描述:https://www.infoq.com/articles/apache-shiro 其功能本质上是一个安全特定的DAO,用于链接数据持久层(任何形式的都 ...