SRCNN学习(一):demo_SR.m

一、demo_SR.m 使用方法

1、Place the "SRCNN" folder into "($Caffe_Dir)/examples

2、Open MATLAB and direct to ($Caffe_Dir)/example/SRCNN, run "demo_SR.m"


二、demo_SR.m 运行结果

根据 demo.m 的代码,显示结果为双三次插值后的图片和 SRCNN 重建后的图片,同时输出双三次插值的峰值信噪比以及 SRCNN 重建的峰值信噪比。

  • 原图:

  • 双三次插值 vs SRCNN重建:


三、demo_SR.m 代码分析

  • 根据邹老师的提示:进行单步跟踪,看代码同时要边调试边看效果

  • 我选择 Matlab 中的运行节对代码进行查看

  • 读取真实图像

  1. close all;
  2. clear all 清空工作区
  3. %% read ground truth image
  4. im = imread('Set5\butterfly_GT.bmp');

此时读入名为 butterbly_GT 的图片,工作区显示图片的值

  • 设定参数

  1. %% set parameters
  2. up_scale = 3;
  3. model = 'model\9-5-5(ImageNet)\x3.mat';

这段代码实现参数设置的功能。

其中up_scale为这段代码设定的放大倍率,当 up_scale = 3 时,选择模型为 x3.mat

  • 仅在照度方面

  1. %% work on illuminance only
  2. if size(im,3)>1
  3. im = rgb2ycbcr(im);
  4. im = im(:, :, 1);
  5. end
  6. im_gnd = modcrop(im, up_scale);
  7. im_gnd = single(im_gnd)/255;

size(im,3) 返回第三维度的长度,由前面可知 im 的值为 256x256x3 uint8,所以返回值应大于1会进入循环。

rgb2ycbcr(im) 将彩色RGB图像转换为 YCbCr 颜色空间中的等效图像, im(:,:,1) 将 im 的第三维度长修改为1。

modcrop(im,up_scale) 该函数在 modcrop.m 文件中有对应的定义:

  1. function imgs = modcrop(imgs, modulo) modcrop函数
  2. if size(imgs,3)==1
  3. sz = size(imgs);
  4. sz = sz - mod(sz, modulo);
  5. imgs = imgs(1:sz(1), 1:sz(2));
  6. else
  7. tmpsz = size(imgs);
  8. sz = tmpsz(1:2);
  9. sz = sz - mod(sz, modulo);
  10. imgs = imgs(1:sz(1), 1:sz(2),:);
  11. end

该函数将图片裁剪为能够调整的大小(与放大率匹配)

  • 双三次插值

  1. %% bicubic interpolation
  2. im_l = imresize(im_gnd, 1/up_scale, 'bicubic'); %缩小三倍
  3. im_b = imresize(im_l, up_scale, 'bicubic'); %放大三倍

imresize() 函数用于调整图像大小,在这里的用法传入三个参数,第一为图片,第二为函数将 图像的长宽大小缩放的倍数,第三为缩放的方法,这里使用的 bicubic 即双三次插值的方法。使用双三次插值的方法产生的图片输出像素值是最近 4×4 邻点中的像素的加权平均值。

至此,梳理各个参数所代表的值

  • im_l :im_gnd 进行双三次插值缩小后的图像

  • im_b : im_gnd 进行双三次插值缩小后,再进行同比例放大的图像

  • SRCNN

  1. %% SRCNN
  2. im_h = SRCNN(model, im_b);

此过程根据 SRCNN 对 im_b 进行训练,产生 im_h 图像

  • 删除边框

  1. %% remove border
  2. im_h = shave(uint8(im_h * 255), [up_scale, up_scale]);
  3. im_gnd = shave(uint8(im_gnd * 255), [up_scale, up_scale]);
  4. im_b = shave(uint8(im_b * 255), [up_scale, up_scale]);

shave() 函数在文件 shave.m 中有定义:

  1. function I = shave(I, border)
  2. I = I(1+border(1):end-border(1),...
  3. 1+border(2):end-border(2), :, :,);
  • 计算 PSNR

  1. %% compute PSNR
  2. psnr_bic = compute_psnr(im_gnd,im_b);
  3. psnr_srcnn = compute_psnr(im_gnd,im_h);

compute_psnr() 函数在文件 compute_psnr.m 中有定义

  1. function psnr=compute_psnr(im1,im2)
  2. if size(im1, 3) == 3,
  3. im1 = rgb2ycbcr(im1);
  4. im1 = im1(:, :, 1);
  5. end
  6. if size(im2, 3) == 3,
  7. im2 = rgb2ycbcr(im2);
  8. im2 = im2(:, :, 1);
  9. end
  10. imdff = double(im1) - double(im2);
  11. imdff = imdff(:);
  12. rmse = sqrt(mean(imdff.^2));
  13. psnr = 20*log10(255/rmse);

在论文中提到 PSNR 是一种用于定量评估图像恢复质量的广泛使用的度量,并且与感知质量部分相关,2个图像之间 PSNR 值越大,则越相似。普遍基准为 30dB ,30dB 以下的图像劣化较为明显。PSNR 定义为:

  1. PSNR = 10log10(MAX^2/MSE)

这里 MAX 表示图像颜色的最大数值,8bit 图像取值为255。MSE(均方差),即 m×n 单色图像 I 和 K(原图像与处理图像)之间均方误差。

compute_psnr() 就是对生成的图像与原图对比,形成信噪比的直观查看方式。

  • 显示结果

  1. %% show results
  2. fprintf('双三次插值的峰值信噪比: %f dB\n', psnr_bic);
  3. fprintf('SRCNN 重建的峰值信噪比: %f dB\n', psnr_srcnn);
  4. figure, imshow(im_b); title('双三次插值');
  5. figure, imshow(im_h); title('SRCNN 重建');
  6. imwrite(im_b, ['双三次插值' '.bmp']);
  7. imwrite(im_h, ['SRCNN 重建' '.bmp']);

输出两张图片,以及两次比较的信噪比。


四、实践

由于通过论文给的函数只会输出灰度的图像,我在网上查看他人的代码时发现输出具有颜色的图像的方式。

下面时我根据他的代码进行修改后输出的结果

  1. close all;
  2. clear all;
  3. %% read ground truth image 读取真实图像
  4. im = imread('Set5\butterfly_GT.bmp');
  5. %% set parameters 设定参数
  6. up_scale = 3;
  7. model = 'model\9-5-5(ImageNet)\x3.mat';
  8. %% work on illuminance only 仅在照度方面
  9. if size(im,3)>1
  10. im = rgb2ycbcr(im);
  11. im_U = im(:, :, 1);
  12. end
  13. im_gnd = modcrop(im_U, up_scale);
  14. im_gnd = single(im_gnd)/255;
  15. im_gnd2 = modcrop(im, up_scale);
  16. im_gnd2 = single(im_gnd2)/255;
  17. im_2 = im_gnd2(:, :, 2);
  18. im_3 = im_gnd2(:, :, 3);
  19. %% bicubic interpolation 双三次插值
  20. im_l = imresize(im_gnd, 1/up_scale, 'bicubic');
  21. im_b = imresize(im_l, up_scale, 'bicubic');
  22. %% SRCNN
  23. im_h = SRCNN(model, im_b);
  24. %% 三通道合回
  25. [m,n] = size(im_h);
  26. im_h1 = zeros(m,n,3);
  27. im_h1(:, :, 1) = im_h;
  28. im_h1(:, :, 2) = im_2;
  29. im_h1(:, :, 3) = im_3;
  30. im_h1 = uint8(im_h1 * 255);%转回uint8
  31. im_h1 = ycbcr2rgb(im_h1);%转回rgb
  32. %% remove border 删除边框
  33. im_h1 = shave(im_h1, [up_scale, up_scale]);
  34. %% show results 显示结果
  35. figure, imshow(im_h1);
  36. title('SRCNN 重建');


五、结语

这周的学习主要是对 SRCNN 的整个流程进行了重新认识,明白了各个步骤的主要任务,了解到论文中 SRCNN 其实是对图片的 Y 通道提取后,进行重建,最后通过输出 PSNR 和图片的方式,来对重建的程度进行分析。

下周将对 SRCNN.m 文件进行学习,并在学习卷积、步长等概念后对 SRCNN 的三个卷积过程有更深刻的理解。

参考博客:超分辨率重建SRCNN--Matlab 7.0中运行

SRCNN(一)的更多相关文章

  1. 『超分辨率重建』从SRCNN到WDSR

    超分辨率重建技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像.SR可分为两类:    1. 从多张低分辨率图像重建出高分辨率图像    2. 从单张低分辨率图 ...

  2. SRCNN

    SRCNN(超分辨率卷积神经网络) 网络结构 l  Conv1: f1 = 9 *9 activation = ‘relu’ l  Conv2: f2 = 1 *1 activation = ‘rel ...

  3. SRcnn:神经网络重建图片的开山之作

    % ========================================================================= % Test code for Super-Re ...

  4. SRCNN之后的深度学习超分辨率

    SRCNN开山之作 IDN 信息蒸馏网络information distillation network(IDN) Fast and Accurate Single Image Super-Resol ...

  5. SRCNN代码分析

    代码是作者页面上下载的matlab版.香港中文大学汤晓鸥教授.Learning a Deep Convolutional Network for Image Super-Resolution. htt ...

  6. 体验SRCNN和FSRCNN两种图像超分网络应用

    摘要:图像超分即超分辨率,将图像从模糊的状态变清晰. 本文分享自华为云社区<图像超分实验:SRCNN/FSRCNN>,作者:zstar. 图像超分即超分辨率,将图像从模糊的状态变清晰.本文 ...

  7. 比SRCNN效果好的传统超分辨率算法汇总

    1.基于深度协作表达的人脸图像超分辨率算法研究与应用_百度学术 采用一种深度协作表达算法框架,构造深度的多线性模型 分段拟合高低分辨率图像块之间的非线性关系,本文算法简洁高效,提供了一种新的深度学习模 ...

  8. SRCNN 卷积神经网络

    2019-05-19 从GitHub下载了代码(这里) 代码量虽然不多,但是第一次学,花了时间还是挺多的.根据代码有跑出结果(基本没有改),但是对于数据集的处理还是看的很懵逼,主要是作者的实现都是用类 ...

  9. DL论文

    题目:Accurate Image Super-Resolution Using Very Deep Convolutional Networks(2016CVPR) 摘要:文中提出了一种高精度处理单 ...

随机推荐

  1. 同余问题(一)——扩展欧几里得exgcd

    前言 扩展欧几里得算法是一个很好的解决同余问题的算法,非常实用. 欧几里得算法 简介 欧几里得算法,又称辗转相除法. 主要用途 求最大公因数\(gcd\). 公式 \(gcd(a,b)=gcd(b,a ...

  2. vuejs组件

    <div id='root'> <ul> <todo-item></todo-item> </ul> </div> <sc ...

  3. windows下安装php依赖关系管理工具composer

    1.安装Composer Composer是PHP的依赖管理工具之一,官方网站 http://getcomposer.org/ .它支持多种安装方式,对于在win下做开发的草来说,最便捷的方式就是下载 ...

  4. 初尝微信小程序1-特点

    微信小程序特点:1.不需要下载安装即可使用 2.用户用完即走,不用关心是否安装太多应用 3.应用将无处不在,随时可用 适合开发的小程序类型:1.简单的用完即走的应用 2.低频的应用 3.性能要求不高的 ...

  5. vue-transition动画

    vue-transition动画 官网API: https://cn.vuejs.org/v2/guide/transitions.html demo点击显示与消失 <div id=" ...

  6. 两种简单的servlet实现反向代理

    以下两种方法都需要引入jar包: <dependency> <groupId>org.mitre.dsmiley.httpproxy</groupId> <a ...

  7. hprose 1.0(rpc 框架) - 执行时序图

  8. django-simple-captcha 验证码干扰线随机点位

    CAPTCHA_NOISE_FUNCTIONS = ( 'captcha.helpers.noise_null',# 设置样式 'captcha.helpers.noise_arcs',# 设置干扰线 ...

  9. Python的集合与字典练习

    集合与字典练习 question1 问题描述:有一个列表,其中包括 10 个元素,例如这个列表是[1,2,3,4,5,6,7,8,9,0],要求将列表中的每个元素一次向前移动一个位置,第一个元素到列表 ...

  10. CMSIS-DAP仿真器_学习(转载)

    先给大家普及一下,哈哈.CMSIS-DAP仿真器,是ARM官方做的开源仿真器,没有版权,自由制作.官方给的源代码,使用的是NXP的单片机LPC4320做的.这个源代码,只要你安装了KEIL5,就可以找 ...