【BZOJ1414/3705】[ZJOI2009]对称的正方形 二分+hash
【BZOJ1414/3705】[ZJOI2009]对称的正方形
Description
Input
Output
Sample Input
4 2 4 4 4
3 1 4 4 3
3 5 3 3 3
3 1 5 3 3
4 2 1 2 4
Sample Output
数据范围
对于30%的数据 n,m≤100
对于100%的数据 n,m≤1000 ,矩阵中的数的大小≤109
题解:枚举中点,然后二分+hash即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1010;
typedef unsigned long long ull;
typedef long long ll;
int v[maxn][maxn];
int n,m;
ll ans;
ull h1[maxn][maxn],h2[maxn][maxn],h3[maxn][maxn],h4[maxn][maxn],b1[maxn],b2[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
int i,j,l,r,mid;
ull g1,g2,g3,g4;
for(i=1;i<=n;i++) for(j=1;j<=m;j++) v[i][j]=rd();
for(b1[0]=b2[0]=1,i=1;i<=n;i++) b1[i]=b1[i-1]*233,b2[i]=b2[i-1]*2333;
for(i=1;i<=n;i++) for(j=1;j<=m;j++) h1[i][j]=h1[i-1][j]*233+h1[i][j-1]*2333-h1[i-1][j-1]*233*2333+v[i][j];
for(i=1;i<=n;i++) for(j=m;j>=1;j--) h2[i][j]=h2[i-1][j]*233+h2[i][j+1]*2333-h2[i-1][j+1]*233*2333+v[i][j];
for(i=n;i>=1;i--) for(j=1;j<=m;j++) h3[i][j]=h3[i+1][j]*233+h3[i][j-1]*2333-h3[i+1][j-1]*233*2333+v[i][j];
for(i=n;i>=1;i--) for(j=m;j>=1;j--) h4[i][j]=h4[i+1][j]*233+h4[i][j+1]*2333-h4[i+1][j+1]*233*2333+v[i][j];
for(i=1;i<=n;i++) for(j=1;j<=m;j++)
{
l=1,r=min(min(i,j),min(n-i+1,m-j+1))+1;
while(l<r)
{
mid=l+r>>1;
g1=h1[i][j]-h1[i-mid][j]*b1[mid]-h1[i][j-mid]*b2[mid]+h1[i-mid][j-mid]*b1[mid]*b2[mid];
g2=h2[i][j]-h2[i-mid][j]*b1[mid]-h2[i][j+mid]*b2[mid]+h2[i-mid][j+mid]*b1[mid]*b2[mid];
g3=h3[i][j]-h3[i+mid][j]*b1[mid]-h3[i][j-mid]*b2[mid]+h3[i+mid][j-mid]*b1[mid]*b2[mid];
g4=h4[i][j]-h4[i+mid][j]*b1[mid]-h4[i][j+mid]*b2[mid]+h4[i+mid][j+mid]*b1[mid]*b2[mid];
if(g1==g2&&g1==g3&&g1==g4) l=mid+1;
else r=mid;
}
ans+=l-1;
l=1,r=min(min(i,j),min(n-i,m-j))+1;
while(l<r)
{
mid=l+r>>1;
g1=h1[i][j]-h1[i-mid][j]*b1[mid]-h1[i][j-mid]*b2[mid]+h1[i-mid][j-mid]*b1[mid]*b2[mid];
j++,g2=h2[i][j]-h2[i-mid][j]*b1[mid]-h2[i][j+mid]*b2[mid]+h2[i-mid][j+mid]*b1[mid]*b2[mid];
i++,j--,g3=h3[i][j]-h3[i+mid][j]*b1[mid]-h3[i][j-mid]*b2[mid]+h3[i+mid][j-mid]*b1[mid]*b2[mid];
j++,g4=h4[i][j]-h4[i+mid][j]*b1[mid]-h4[i][j+mid]*b2[mid]+h4[i+mid][j+mid]*b1[mid]*b2[mid];
i--,j--;
if(g1==g2&&g1==g3&&g1==g4) l=mid+1;
else r=mid;
}
ans+=l-1;
}
printf("%lld",ans);
return 0;
}
【BZOJ1414/3705】[ZJOI2009]对称的正方形 二分+hash的更多相关文章
- 【BZOJ1414】[ZJOI2009]对称的正方形(哈希)
[BZOJ1414][ZJOI2009]对称的正方形(哈希) 题面 BZOJ 洛谷 题解 深思熟虑一波,发现一个矩阵如果左右对称的话,那么它每行都是一个回文串,同理,如果上下对称的话,那么每列都是一个 ...
- bzoj 1414: [ZJOI2009]对称的正方形 manacher算法+單調隊列
1414: [ZJOI2009]对称的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 331 Solved: 149[Submit][Stat ...
- [luoguP2601] [ZJOI2009]对称的正方形(二维Hash + 二分 || Manacher)
传送门 很蒙蔽,不知道怎么搞. 网上看题解有说可以哈希+二分搞,也有的人说用Manacher搞,Manacher是什么鬼?以后再学. 对于这个题,可以从矩阵4个角hash一遍,然后枚举矩阵中的点,再二 ...
- bzoj 1414: [ZJOI2009]对称的正方形
Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们排成了一个n行m列的矩阵.通过观察,Orez发现这些数据蕴涵了一 ...
- 题解-------[ZJOI2009]对称的正方形
传送门 题目大意 找到所有的上下左右都相同的正方形. 思路:二分+二维Hash 这道题我们首先想到不能暴力判断一个正方形是否合法. 然后我们发现当一个正方形合法时,以这个正方形为中心且比它小的正方形也 ...
- bzoj 1567: [JSOI2008]Blue Mary的战役地图【二分+hash】
二维哈希+二分 说是二维,其实就是先把列hash了,然后再用列的hash值hash行,这样可以O(n)的计算一个正方形的hash值,然后二分边长,枚举左上角点的坐标然后hash判断即可 只要base选 ...
- luoguP2601 对称的正方形
题目描述 给出一个数字矩形,求这个矩形中有多少个子正方形满足上下对称.左右对称. 思路 我们可以用3个哈希数组 \(a\ b\ c\) 分别表示矩形从左上往右下看,从左下往右上看,从右上往左下看的样子 ...
- BZOJ 1014: [JSOI2008]火星人prefix [splay 二分+hash] 【未完】
1014: [JSOI2008]火星人prefix Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6243 Solved: 2007[Submit] ...
- BZOJ1014: [JSOI2008]火星人prefix(splay 二分 hash)
题意 题目链接 Sol 一眼splay + 二分hash,不过区间splay怎么写来着呀 试着写了两个小时发现死活不对 看了一下yyb的代码发现自己根本就不会splay.... // luogu-ju ...
随机推荐
- Codevs 3578 无线网络发射器选址== NOIP 2014 Day2 T1
3578 无线网络发射器选址 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 白银 Silver 题目描述 Description 随着智能手机的日益普及,人们对无线网的需求日益增大. ...
- sublime flatLand 主题
今天试了下感觉主题不错 记下来备忘. 1.sublime3 package control install 搜索 flatLand 2 安装完成后. 修改 Preferences 文件,通过 Sub ...
- Laravel 5.1 框架返回状态拦截
Laravel 5.1 返回信息状态拦截 可以在app\Exceptions\Handler.php文件中修改, public function render($request, Exception ...
- [List] C#数组学习
数组概述 C# 数组从零开始建立索引,即数组索引从零开始.C# 中数组的工作方式与在大多数其他流行语言中的工作方式类似.但还有一些差异应引起注意.声明数组时,方括号 ([]) 必须跟在类型后面,而不是 ...
- Hibernate游记——装备篇《一》(基础配置详解)
Hibernate配置文件可以有两种格式,一种是 hibernate.properties ,另一种是 hibernate.cfg.xml 后者稍微方便一些,当增加hbm映射文件的时候,可以直接在 h ...
- git使用笔记一:
Get code into Bitbucket fast using the command line Set up your local directory Set up Git on your m ...
- 用线段树写Dijkstar
如题 noip前就想用线段树优化Dijkstar 写那啥,感觉挺好玩的 写了个线段树优化的Dijkstar #include<cstdio> #include<cstring> ...
- 51Nod 约数之和
1220 约数之和 题目来源: Project Euler 基准时间限制:3 秒 ...
- Java创建和解析Json数据方法(五)——Google Gson包的使用
(五)Google Gson包的使用 1.简介 Gson包中,使用最多的是Gson类的toJson()和fromJson()方法: ①toJson():将java对象转化为json数据 ...
- 【java】spring项目中 对entity进行本类间的克隆
方法1: [使用spring自带BeanUtils实现克隆] [要求:需要被克隆的类实现Cloneable接口并且重写clone()方法] >例子: >>实体: package co ...