首先说一下题意,Q个区域,M个任务,每个区域任务可能有多个,然后给你个到各地所需时间的矩阵,每个任务都有开始和持续时间,问最少需要多少工人? 每个工人只能同时执行一个任务。

通过题意,我的瞬间反应就是先把点拆开再说,因为每个区域可能有多个任务,所以把每个任务都当做一点处理,之后就需要考虑一件事情,一个工人在Qi区域做完之后是不是应该去一个离他最近且正好有任务的地方Qj,那么他从Qi到Qj是不是应该走最近的路线? 下一步就出来了,求出所有区域之间的最短距离,用floyd一键搞定。然后就可以建图(有向的)了,把能衔接起来的任务统统连上,按照上一个任务的开始时间+持续时间+到下一点的时间<=下一点的开始时间来连边(不用换区域的到下一点的时间为零),那么此时的问题就变成了多少个工人能把图走完?  即最小路径覆盖,直接匈牙利算法搞定。

好了上代码

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#define maxn 500
#define inf 0xfffffff
using namespace std; struct edge
{
int pos,realpos,start,need;
}rela[maxn];
vector<int> q[maxn];
int mize[maxn][maxn],point[maxn];
int vis[maxn],link[maxn];
int n,m,sum;
void init()
{
for(int i=;i<=maxn;i++)
q[i].clear();
memset(rela,,sizeof(rela));
memset(mize,,sizeof(mize));
memset(point,,sizeof(point));
for(int a=;a<=n;a++)
for(int b=;b<=n;b++)
{
scanf("%d",&mize[a][b]);
if(mize[a][b]==-) mize[a][b]=inf;
} for(int c=;c<=m;c++)
{
scanf("%d %d %d",&rela[c].pos,&rela[c].start,&rela[c].need);
int p=;
for(int d=;d<c;d++)
{
if(rela[d].pos==rela[c].pos) p++;
}
rela[c].realpos=rela[c].pos+n*p;
point[rela[c].realpos]=;
if(sum<rela[c].realpos) sum=rela[c].realpos;
}
}
void floyd()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
for(int k=;k<=n;k++)
{
mize[j][k]=mize[j][k]<mize[i][k]+mize[j][i]?mize[j][k]:mize[i][k]+mize[j][i];
}
}
} }
void set_map()
{
for(int i=;i<=m;i++)
{
int realpos=rela[i].realpos,pos=rela[i].pos,time=rela[i].need+rela[i].start;
for(int j=;j<=m;j++)
{
if(j==i) continue;
int a=rela[j].realpos,b=rela[j].pos,t=rela[j].start;
// if(mize[pos][b]==-1||mize[b][pos]==-1) continue;
if(time+mize[pos][b]<=t) // 矩阵式对称的 怎么写都无所谓
{
q[realpos].push_back(a);
// q[a].push_back(realpos);
}
}
}
/* for(int i=1;i<=8;i++)
{
if(q[i].size()==0) continue;
cout<<i<<": "<<endl;
for(int j=0;j<q[i].size();j++)
{
cout<<q[i][j]<<" ";
}
cout<<endl;
}*/
}
int dfs(int x)
{
for(int i=;i<q[x].size();i++)
{
int y=q[x][i];
if(!vis[y])
{
vis[y] = true;
if(link[y]== -||dfs(link[y]))
{
link[y] = x;
return true;
}
}
}
return false;
}
void solve()
{
int s=;
memset(link,-,sizeof(link));
for(int i=;i<=sum;i++)
{
if(point[i]==) continue;
memset(vis,,sizeof(vis));
if(dfs(i)) s++;
}
printf("%d\n",m-s);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==) break;
sum=;
init();
floyd();
set_map();
solve();
}
return ;
}

POJ3216 最小路径覆盖的更多相关文章

  1. 【HDU1960】Taxi Cab Scheme(最小路径覆盖)

    Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  2. loj 1429(可相交的最小路径覆盖)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1429 思路:这道题还是比较麻烦的,对于求有向图的可相交的最小路径覆盖,首先要解决成环问 ...

  3. 【HDU3861 强连通分量缩点+二分图最小路径覆盖】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...

  4. POJ 3216 最小路径覆盖+floyd

    Repairing Company Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 6646   Accepted: 178 ...

  5. POJ3020Antenna Placement(最小路径覆盖+重在构图)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7788   Accepted: 3880 ...

  6. POJ 3020 (二分图+最小路径覆盖)

    题目链接:http://poj.org/problem?id=3020 题目大意:读入一张地图.其中地图中圈圈代表可以布置卫星的空地.*号代表要覆盖的建筑物.一个卫星的覆盖范围是其周围上下左右四个点. ...

  7. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

  8. hiho 第118周 网络流四·最小路径覆盖

    描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机会派出若干个调查团去沿途查看一下H市内各个景点的游客情况. H市一共有N个旅游景点(编号1..N),由M条单向游 ...

  9. 【网络流24题----03】Air Raid最小路径覆盖

    Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

随机推荐

  1. 传智播客C++

    轻松入门实战应用传智播客C++学院就业班第一阶段C提高课程 传智播客C提高讲义 传智扫地僧 1程序内存模型 1.1就业班引言 1.1.1问题引出 企业需要能干活的人  C学到什么程度可以找工作  ...

  2. I/O————对象流

    对象流指的是可以直接把一个对象以流的形式传输给其他的介质,比如硬盘 一个对象以流的形式进行传输,叫做序列化. 该对象所对应的类,必须是实现Serializable接口 对象的序列化与反序列化就是从文件 ...

  3. JFrame Frame 窗口关闭

    JFrame是Frame的子类,即JFrame继承自Frame. JFrame是javax.swing.JFrame的类,Frame是java.awt.Frame的类. 类似的还有JButton.Bu ...

  4. cas实现单点登录原理

    1.基于Cookie的单点登录的回顾        基于Cookie的单点登录核心原理: 将用户名密码加密之后存于Cookie中,之后访问网站时在过滤器(filter)中校验用户权限,如果没有权限则从 ...

  5. EasyUI:EasyUI-DataGrid多行合并实现

    1.首先我们<table>增加一个属性data-options="onLoadSuccess:mergeCells",mergeCells是我们对应的JS方法名,意思就 ...

  6. [nmon]使用nmon工具监控系统资源

    1.下载nmon 下载正确的nmon版本, 查看linux服务器版本,命令:lsb_release -a,查看到当前系统为RedHat 6.4 然后我们根据我们的linux版本,下载相应nmon版本, ...

  7. (四)SpringMVC之使用cookie实现记住密码的功能

    注意:因为实现记住密码的功能需要用到json,所以需要加上这条语句: <script type="text/javascript" src="scripts/jqu ...

  8. cookie存验证码时间,时间没走完不能再次点击

    <script> var balanceSeconds=getcookie('Num'); console.log(balanceSeconds) var timer; var isCli ...

  9. 【UML】部署图Deployment diagram(实现图)(转)

    http://blog.csdn.net/sds15732622190/article/details/49049665 前言 下面要介绍UML中的部署图,和构件图一样,它也属于实现图的一种,五种静态 ...

  10. 2018.5.6 解决问题:oracle------ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务

    解决问题:ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 或者是重启电脑之后无法进入控制台企业管理器(OEM)图形化界面(重新添加注入监听器就行了 文件listener.org) ...