Lucene系列五:Lucene索引详解(IndexWriter详解、Document详解、索引更新)
一、IndexWriter详解
问题1:索引创建过程完成什么事?
分词、存储到反向索引中
1. 回顾Lucene架构图:
介绍我们编写的应用程序要完成数据的收集,再将数据以document的形式用lucene的索引API创建索引、存储。 这里重点要强调应用代码负责做什么,lucene负责做什么。
2. Lucene索引创建API 图示
通过该图介绍lucene创建索引的核心API:Document、IndexWriter
Lucene中要索引的文档、数据记录以document表示,应用程序通过IndexWirter将Document加入到索引中。
3. Lucene索引创建代码示例
public static void main(String[] args) throws IOException {
// 创建使用的分词器
Analyzer analyzer = new IKAnalyzer4Lucene7(true);
// 索引配置对象
IndexWriterConfig config = new IndexWriterConfig(analyzer);
// 设置索引库的打开模式:新建、追加、新建或追加
config.setOpenMode(OpenMode.CREATE_OR_APPEND); // 索引存放目录
// 存放到文件系统中
Directory directory = FSDirectory
.open((new File("f:/test/indextest")).toPath()); // 存放到内存中
// Directory directory = new RAMDirectory(); // 创建索引写对象
IndexWriter writer = new IndexWriter(directory, config); // 创建document
Document doc = new Document();
// 往document中添加 商品id字段
doc.add(new StoredField("prodId", "p0001")); // 往document中添加 商品名称字段
String name = "ThinkPad X1 Carbon 20KH0009CD/25CD 超极本轻薄笔记本电脑联想";
doc.add(new TextField("name", name, Store.YES)); // 将文档添加到索引
writer.addDocument(doc); // ..... // 刷新
writer.flush(); // 提交
writer.commit(); // 关闭 会提交
writer.close();
directory.close();
}
上面示例代码对应的类图展示:
4. IndexWriterConfig 写索引配置:
使用的分词器,
如何打开索引(是新建,还是追加)。
还可配置缓冲区大小、或缓存多少个文档,再刷新到存储中。
还可配置合并、删除等的策略。
注意:
用这个配置对象创建好IndexWriter对象后,再修改这个配置对象的配置信息不会对IndexWriter对象起作用。
如要在indexWriter使用过程中修改它的配置信息,通过 indexWriter的getConfig()方法获得 LiveIndexWriterConfig 对象,在这个对象中可查看该IndexWriter使用的配置信息,可进行少量的配置修改(看它的setter方法)
5. Directory 指定索引数据存放的位置
内存
文件系统
数据库
保存到文件系统用法: Directory directory = FSDirectory.open(Path path); // path指定目录
保存到内存中用法:Directory directory = new RAMDirectory();
6. IndexWriter 用来创建、维护一个索引 。它的API使用流程:
// 创建索引写对象
IndexWriter writer = new IndexWriter(directory, config); // 创建document // 将文档添加到索引
writer.addDocument(doc); // 删除文档
//writer.deleteDocuments(terms); //修改文档
//writer.updateDocument(term, doc); // 刷新
writer.flush(); // 提交
writer.commit();
注意:IndexWriter是线程安全的。 如果你的业务代码中有其他的同步控制,请不要使用IndexWriter作为锁对象,以免死锁。
IndexWriter涉及类图示:
问题2: 索引库中会存储反向索引数据,会存储document吗?
索引库会存储一下关键的document信息
问:在百度、天猫上进行搜索,展示的列表中的数据来自哪里?源DB、FS 吗?
存在索引库里
二、Document详解
1. Document 文档
要索引的数据记录、文档在lucene中的表示,是索引、搜索的基本单元。一个Document由多个字段Field构成。就像数据库的记录-字段。
IndexWriter按加入的顺序为Document指定一个递增的id(从0开始),称为文档id。反向索引中存储的是这个id,文档存储中正向索引也是这个id。 业务数据的主键id只是文档的一个字段。
Document API
2. Field
字段:由字段名name、字段值value(fieldsData)、字段类型 type 三部分构成。
字段值可以是文本(String、Reader 或 预分析的 TokenStream)、二进制值(byte[])或数值。
IndexableField Field API
3. Document—Field 数据举例
新闻:新闻id,新闻标题、新闻内容、作者、所属分类、发表时间
网页搜索的网页:标题、内容、链接地址
商品: id、名称、图片链接、类别、价格、库存、商家、品牌、月销量、详情…
问题1:我们收集数据创建document对象来为其创建索引,数据的所有属性是否都需要加入到document中?如数据库表中的数据记录的所有字段是否都需要放到document中?哪些字段应加入到document中?
看具体的业务,只有需要被搜索和展示的字段才需要被加入到document中
问题2:是不是所有加入的字段都需要进行索引?是不是所有加入的字段都要保存到索引库中?什么样的字段该被索引?什么样的字段该被存储?
看具体的业务,需要被搜索的字段才该被索引,需要被展示的字段该被存储
问题3:各种要被索引的字段该以什么样的方式进行索引,全都是分词进行索引,还是有不同区别?
看是模糊查询还是精确查询,模糊查询的话就需要被分词索引,精确查询的话就不需要被分词索引
4. IndexableFieldType
字段类型:描述该如何索引存储该字段。
字段可选择性地保存在索引中,这样在搜索结果中,这些保存的字段值就可获得。
一个Document应该包含一个或多个存储字段来唯一标识一个文档。为什么?
为从原数据中拿完整数据去展示
5. Document 类关系
IndexableFieldType API 说明
6. IndexOptions 索引选项说明:
NONE:Not indexed 不索引
DOCS: 反向索引中只存储了包含该词的 文档id,没有词频、位置
DOCS_AND_FREQS: 反向索引中会存储 文档id、词频
DOCS_AND_FREQS_AND_POSITIONS:反向索引中存储 文档id、词频、位置
DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS :反向索引中存储 文档id、词频、位置、偏移量
package com.study.lucene.indexdetail; import java.io.File;
import java.io.IOException; import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory; import com.study.lucene.ikanalyzer.Integrated.IKAnalyzer4Lucene7; /**
* 索引选项选择
*
* @author THINKPAD
*
*/
public class IndexOptionsDemo { public static void main(String[] args) {
// 创建使用的分词器
Analyzer analyzer = new IKAnalyzer4Lucene7(true); // 索引配置对象
IndexWriterConfig config = new IndexWriterConfig(analyzer); try ( // 索引存放到文件系统中
Directory directory = FSDirectory.open((new File("f:/test/indextest")).toPath()); // 创建索引写对象
IndexWriter writer = new IndexWriter(directory, config);) { // 准备document
Document doc = new Document();
// 字段content
String name = "content";
String value = "张三说的确实在理";
FieldType type = new FieldType();
// 设置是否存储该字段
type.setStored(true); // 请试试不存储的结果
// 设置是否对该字段分词
type.setTokenized(true); // 请试试不分词的结果
// 设置该字段的索引选项
type.setIndexOptions(IndexOptions.DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS); // 请尝试不同的选项的效果
type.freeze(); // 使不可更改 Field field = new Field(name, value, type);
// 添加字段
doc.add(field);
// 加入到索引中
writer.addDocument(doc); } catch (IOException e) {
e.printStackTrace();
}
}
}
问题4:如果要在搜索结果中做关键字高亮,需要什么信息?如果要实现短语查询、临近查询(跨度查询),需要什么信息?
如 要搜索包含“张三” “李四”,且两词之间跨度不超过5个字符 。
需要位置和偏移量
问题5:位置、偏移数据在反向索引中占的存储量占比大不大?
看分词的数据量
问题6:如果某个字段不需要进行短语查询、临近查询,那么在反向索引中就不需要保存位置、偏移数据。这样是不是可以降低反向索引的数据量,提升效率?但是如果该字段要做高亮显示支持,该怎么办?。
为了提升反向索引的效率,这样的字段的位置、偏移数据是不应该保存到反向索引中的。这也你前面看到 IndexOptions为什么有那些选项的原因。
一个字段分词器分词后,每个词项会得到一系列属性信息,如 出现频率、位置、偏移量等,这些信息构成一个词项向量 termVectors
7. IndexableFieldType API
storeTermVectors:
对于不需要在搜索反向索引时用到,但在搜索结果处理时需要的位置、偏移量、附加数据(payLoad) 的字段,我们可以单独为该字段存储(文档id词项向量)的正向索引。
示例代码:
package com.study.lucene.indexdetail; import java.io.File;
import java.io.IOException; import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory; import com.study.lucene.ikanalyzer.Integrated.IKAnalyzer4Lucene7; /**
* 词向向量
* @author THINKPAD
*
*/
public class IndexTermVectorsDemo { public static void main(String[] args) {
// 创建使用的分词器
Analyzer analyzer = new IKAnalyzer4Lucene7(true); // 索引配置对象
IndexWriterConfig config = new IndexWriterConfig(analyzer); try ( // 索引存放到文件系统中
Directory directory = FSDirectory
.open((new File("f:/test/indextest")).toPath()); // 创建索引写对象
IndexWriter writer = new IndexWriter(directory, config);) { // 准备document
Document doc = new Document();
// 字段content
String name = "content";
String value = "张三说的确实在理";
FieldType type = new FieldType();
// 设置是否存储该字段
type.setStored(true); // 请试试不存储的结果
// 设置是否对该字段分词
type.setTokenized(true); // 请试试不分词的结果
// 设置该字段的索引选项
type.setIndexOptions(IndexOptions.DOCS); // 反向索引中只保存词项 // 设置为该字段保存词项向量
type.setStoreTermVectors(true);
type.setStoreTermVectorPositions(true);
type.setStoreTermVectorOffsets(true);
type.setStoreTermVectorPayloads(true); type.freeze(); // 使不可更改 Field field = new Field(name, value, type);
// 添加字段
doc.add(field);
// 加入到索引中
writer.addDocument(doc); } catch (IOException e) {
e.printStackTrace();
}
}
}
请为商品记录建立索引,字段信息如下:
商品id:字符串,不索引、但存储
String prodId = "p0001";
商品名称:字符串,分词索引(存储词频、位置、偏移量)、存储
String name = “ThinkPad X1 Carbon 20KH0009CD/25CD 超极本轻薄笔记本电脑";
图片链接:仅存储
String imgUrl = "http://www.cnblogs.com/leeSmall/";
商品简介:字符串,分词索引(不需要支持短语、临近查询)、存储,结果中支持高亮显示
String simpleIntro = "集成显卡 英特尔 酷睿 i5-8250U 14英寸";
品牌:字符串,不分词索引,存储
String brand = "ThinkPad";
package com.study.lucene.indexdetail; import java.io.File;
import java.io.IOException; import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.NumericUtils; import com.study.lucene.ikanalyzer.Integrated.IKAnalyzer4Lucene7; /**
* 为商品记录建立索引
* @author THINKPAD
*
*/
public class ProductIndexExercise { public static void main(String[] args) {
// 创建使用的分词器
Analyzer analyzer = new IKAnalyzer4Lucene7(true); // 索引配置对象
IndexWriterConfig config = new IndexWriterConfig(analyzer); try (
// 索引存放目录
// 存放到文件系统中
Directory directory = FSDirectory
.open((new File("f:/test/indextest")).toPath()); // 存放到内存中
// Directory directory = new RAMDirectory(); // 创建索引写对象
IndexWriter writer = new IndexWriter(directory, config);) { // 准备document
Document doc = new Document();
// 商品id:字符串,不索引、但存储
String prodId = "p0001";
FieldType onlyStoredType = new FieldType();
onlyStoredType.setTokenized(false);
onlyStoredType.setIndexOptions(IndexOptions.NONE);
onlyStoredType.setStored(true);
onlyStoredType.freeze();
doc.add(new Field("prodId", prodId, onlyStoredType)); // 商品名称:字符串,分词索引(存储词频、位置、偏移量)、存储
String name = "ThinkPad X1 Carbon 20KH0009CD/25CD 超极本轻薄笔记本电脑联想";
FieldType indexedAllStoredType = new FieldType();
indexedAllStoredType.setStored(true);
indexedAllStoredType.setTokenized(true);
indexedAllStoredType.setIndexOptions(
IndexOptions.DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS);
indexedAllStoredType.freeze();
doc.add(new Field("name", name, indexedAllStoredType)); // 图片链接:仅存储
String imgUrl = "http://www.cnblogs.com/leeSmall/";
doc.add(new Field("imgUrl", imgUrl, onlyStoredType)); // 商品简介:文本,分词索引(不需要支持短语、临近查询)、存储,结果中支持高亮显示
String simpleIntro = "集成显卡 英特尔 酷睿 i5-8250U 14英寸";
FieldType indexedTermVectorsStoredType = new FieldType();
indexedTermVectorsStoredType.setStored(true);
indexedTermVectorsStoredType.setTokenized(true);
indexedTermVectorsStoredType
.setIndexOptions(IndexOptions.DOCS_AND_FREQS);
indexedTermVectorsStoredType.setStoreTermVectors(true);
indexedTermVectorsStoredType.setStoreTermVectorPositions(true);
indexedTermVectorsStoredType.setStoreTermVectorOffsets(true);
indexedTermVectorsStoredType.freeze(); doc.add(new Field("simpleIntro", simpleIntro,
indexedTermVectorsStoredType)); // 价格,整数,单位分,不索引、存储
int price = 2999900;
// Field 类有整数类型值的构造方法吗?
// 用字节数组来存储试试,还是转为字符串?
byte[] result = new byte[Integer.BYTES];
NumericUtils.intToSortableBytes(price, result, 0); doc.add(new Field("price", result, onlyStoredType)); writer.addDocument(doc); } catch (IOException e) {
e.printStackTrace();
} } }
问题7 :我们往往需要对搜索的结果支持按不同的字段进行排序,如商品搜索结果按价格排序、按销量排序等。以及对搜索结果进行按某字段分组统计,如按品牌统计。
存储的文档数据中(文档是行式存储) 就得把搜到的所有文档加载到内存中,来获取价格,再按价格排序。 如果搜到的文档列表量很大,会有什么问题没? 费内存 效率低 我们往往对结果列表是分页处理,并不需要把所有文档数据加载。
空间换时间:对这种需要排序、分组、聚合的字段,为其建立独立的文档->字段值的正向索引、列式存储。这样我们要加载搜中文档的这个字段的数据就快很多,耗内存少。
IndexableFieldType 中的 docValuesType方法 就是让你来为需要排序、分组、聚合的字段指定如何为该字段创建文档->字段值的正向索引的。
DocValuesType 选项说明:
NONE 不开启docvalue
NUMERIC 单值、数值字段,用这个
BINARY 单值、字节数组字段用
SORTED 单值、字符字段用, 会预先对值字节进行排序、去重存储
SORTED_NUMERIC 单值、数值数组字段用,会预先对数值数组进行排序
SORTED_SET 多值字段用,会预先对值字节进行排序、去重存储
具体使用选择:
字符串+单值 会选择SORTED作为docvalue存储
字符串+多值 会选择SORTED_SET作为docvalue存储
数值或日期或枚举字段+单值 会选择NUMERIC作为docvalue存储
数值或日期或枚举字段+多值 会选择SORTED_SET作为docvalue存储
注意:需要排序、分组、聚合、分类查询(面查询)的字段才创建docValues
8. 扩展整型Field
通过查看Filed的构造方法,发现里面没有设置整型数值的方法,所以需要我们自己来扩展
扩展的方法如下:
1. 扩展Field,提供构造方法传入数值类型值,赋给字段值字段;
2. 改写binaryValue() 方法,返回数值的字节引用。
package com.study.lucene.indexdetail.extendfield; import org.apache.lucene.document.Field;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.NumericUtils; /**
*
* @Description: 扩展整型Field
* @author liguangsheng
* @date 2018年5月11日
*
*/
public class ExtendIntField extends Field {
public ExtendIntField(String fieldName, int value, FieldType type) {
super(fieldName, type);
this.fieldsData = Integer.valueOf(value);
} @Override
public BytesRef binaryValue() {
byte[] bs = new byte[Integer.BYTES];
NumericUtils.intToSortableBytes((Integer) this.fieldsData, bs, 0);
return new BytesRef(bs);
}
}
9. Lucene预定义的字段子类
package com.study.lucene.indexdetail; import java.io.File;
import java.io.IOException; import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.document.NumericDocValuesField;
import org.apache.lucene.document.SortedDocValuesField;
import org.apache.lucene.document.StringField;
import org.apache.lucene.index.DocValuesType;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.NumericUtils; import com.study.lucene.ikanalyzer.Integrated.IKAnalyzer4Lucene7; /**
* 索引的创建
*
* @author THINKPAD
*
*/
public class IndexWriteDemo { public static void main(String[] args) {
// 创建使用的分词器
Analyzer analyzer = new IKAnalyzer4Lucene7(true); // 索引配置对象
IndexWriterConfig config = new IndexWriterConfig(analyzer); try (
// 索引存放目录
// 存放到文件系统中
Directory directory = FSDirectory.open((new File("f:/test/indextest")).toPath()); // 存放到内存中
// Directory directory = new RAMDirectory(); // 创建索引写对象
IndexWriter writer = new IndexWriter(directory, config);) { // 准备document
Document doc = new Document();
// 商品id:字符串,不索引、但存储
String prodId = "p0001";
FieldType onlyStoredType = new FieldType();
onlyStoredType.setTokenized(false);
onlyStoredType.setIndexOptions(IndexOptions.NONE);
onlyStoredType.setStored(true);
onlyStoredType.freeze();
doc.add(new Field("prodId", prodId, onlyStoredType)); // 等同下一行
// doc.add(new StoredField("prodId", prodId)); // 商品名称:字符串,分词索引(存储词频、位置、偏移量)、存储
String name = "ThinkPad X1 Carbon 20KH0009CD/25CD 超极本轻薄笔记本电脑联想";
FieldType indexedAllStoredType = new FieldType();
indexedAllStoredType.setStored(true);
indexedAllStoredType.setTokenized(true);
indexedAllStoredType.setIndexOptions(IndexOptions.DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS);
indexedAllStoredType.freeze(); doc.add(new Field("name", name, indexedAllStoredType)); // 图片链接:仅存储
String imgUrl = "http://www.cnblogs.com/aaa";
doc.add(new Field("imgUrl", imgUrl, onlyStoredType)); // 商品简介:文本,分词索引(不需要支持短语、临近查询)、存储,结果中支持高亮显示
String simpleIntro = "集成显卡 英特尔 酷睿 i5-8250U 14英寸";
FieldType indexedTermVectorsStoredType = new FieldType();
indexedTermVectorsStoredType.setStored(true);
indexedTermVectorsStoredType.setTokenized(true);
indexedTermVectorsStoredType.setIndexOptions(IndexOptions.DOCS_AND_FREQS);
indexedTermVectorsStoredType.setStoreTermVectors(true);
indexedTermVectorsStoredType.setStoreTermVectorPositions(true);
indexedTermVectorsStoredType.setStoreTermVectorOffsets(true);
indexedTermVectorsStoredType.freeze(); doc.add(new Field("simpleIntro", simpleIntro, indexedTermVectorsStoredType)); // 价格,整数,单位分,不索引、存储、要支持排序
int price = 999900;
FieldType numericDocValuesType = new FieldType();
numericDocValuesType.setTokenized(false);
numericDocValuesType.setIndexOptions(IndexOptions.NONE);
numericDocValuesType.setStored(true);
numericDocValuesType.setDocValuesType(DocValuesType.NUMERIC);
numericDocValuesType.setDimensions(1, Integer.BYTES);
numericDocValuesType.freeze(); doc.add(new MyIntField("price", price, numericDocValuesType)); // 与下两行等同
// doc.add(new StoredField("price", price));
// doc.add(new NumericDocValuesField("price", price)); // 类别:字符串,索引不分词,不存储、支持分类统计,多值
FieldType indexedDocValuesType = new FieldType();
indexedDocValuesType.setTokenized(false);
indexedDocValuesType.setIndexOptions(IndexOptions.DOCS);
indexedDocValuesType.setDocValuesType(DocValuesType.SORTED_SET);
indexedDocValuesType.freeze(); doc.add(new Field("type", "电脑", indexedDocValuesType) {
@Override
public BytesRef binaryValue() {
return new BytesRef((String) this.fieldsData);
}
});
doc.add(new Field("type", "笔记本电脑", indexedDocValuesType) {
@Override
public BytesRef binaryValue() {
return new BytesRef((String) this.fieldsData);
}
}); // 等同下四行
// doc.add(new StringField("type", "电脑", Store.NO));
// doc.add(new SortedSetDocValuesField("type", new BytesRef("电脑")));
// doc.add(new StringField("type", "笔记本电脑", Store.NO));
// doc.add(new SortedSetDocValuesField("type", new
// BytesRef("笔记本电脑"))); // 商家 索引(不分词),存储、按面(分类)查询
String fieldName = "shop";
String value = "联想官方旗舰店";
doc.add(new StringField(fieldName, value, Store.YES));
doc.add(new SortedDocValuesField(fieldName, new BytesRef(value))); // 上架时间:数值,排序需要
long upShelfTime = System.currentTimeMillis();
doc.add(new NumericDocValuesField("upShelfTime", upShelfTime)); writer.addDocument(doc); } catch (IOException e) {
e.printStackTrace();
} } public static class MyIntField extends Field { public MyIntField(String fieldName, int value, FieldType type) {
super(fieldName, type);
this.fieldsData = Integer.valueOf(value);
} @Override
public BytesRef binaryValue() {
byte[] bs = new byte[Integer.BYTES];
NumericUtils.intToSortableBytes((Integer) this.fieldsData, bs, 0);
return new BytesRef(bs);
}
} }
三、索引更新
IndexWriter 索引更新 API
说明:
Term 词项 指定字段的词项
删除流程:根据Term、Query找到相关的文档id、同时删除索引信息,再根据文档id删除对应的文档存储。
更新流程:先删除、再加入新的doc
注意:只可根据索引的字段进行更新。
package com.study.lucene.indexdetail; import java.io.File;
import java.io.IOException; import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.Term;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory; import com.study.lucene.ikanalyzer.Integrated.IKAnalyzer4Lucene7; /**
* @Description: 索引更新
* @author liguangsheng
* @date 2018年5月11日
*
*/ public class IndexUpdateDemo { public static void main(String[] args) {
// 创建使用的分词器
Analyzer analyzer = new IKAnalyzer4Lucene7(true); // 索引配置对象
IndexWriterConfig config = new IndexWriterConfig(analyzer); try (
// 索引存放目录
// 存放到文件系统中
Directory directory = FSDirectory.open((new File("f:/test/indextest")).toPath()); // 存放到内存中
// Directory directory = new RAMDirectory(); // 创建索引写对象
IndexWriter writer = new IndexWriter(directory, config);) { // Term term = new Term("prodId", "p0001");
Term term = new Term("type", "笔记本电脑"); // 准备document
Document doc = new Document();
// 商品id:字符串,不索引、但存储
String prodId = "p0003";
FieldType onlyStoredType = new FieldType();
onlyStoredType.setTokenized(false);
onlyStoredType.setIndexOptions(IndexOptions.NONE);
onlyStoredType.setStored(true);
onlyStoredType.freeze();
doc.add(new Field("prodId", prodId, onlyStoredType)); writer.updateDocument(term, doc); // Term term = new Term("name", "笔记本电脑");
// writer.deleteDocuments(term); writer.flush(); writer.commit();
System.out.println("执行更新完毕。"); } catch (IOException e) {
e.printStackTrace();
} }
}
源码获取地址:
https://github.com/leeSmall/SearchEngineDemo
Lucene系列五:Lucene索引详解(IndexWriter详解、Document详解、索引更新)的更多相关文章
- Lucene系列六:Lucene搜索详解(Lucene搜索流程详解、搜索核心API详解、基本查询详解、QueryParser详解)
一.搜索流程详解 1. 先看一下Lucene的架构图 由图可知搜索的过程如下: 用户输入搜索的关键字.对关键字进行分词.根据分词结果去索引库里面找到对应的文章id.根据文章id找到对应的文章 2. L ...
- Lucene系列三:Lucene分词器详解、实现自己的一个分词器
一.Lucene分词器详解 1. Lucene-分词器API (1)org.apache.lucene.analysi.Analyzer 分析器,分词器组件的核心API,它的职责:构建真正对文本进行分 ...
- Lucene.net(4.8.0) 学习问题记录三: 索引的创建 IndexWriter 和索引速度的优化
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...
- 【HANA系列】【第五篇】SAP HANA XS的JavaScript API详解
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列][第五篇]SAP HANA XS ...
- elasticsearch系列五:搜索详解(查询建议介绍、Suggester 介绍)
一.查询建议介绍 1. 查询建议是什么? 查询建议,为用户提供良好的使用体验.主要包括: 拼写检查: 自动建议查询词(自动补全) 拼写检查如图: 自动建议查询词(自动补全): 2. ES中查询建议的A ...
- 第一个lucene程序,把一个信息写入到索引库中、根据关键词把对象从索引库中提取出来、lucene读写过程分析
新建一个Java Project :LuceneTest 准备lucene的jar包,要加入的jar包至少有: 1)lucene-core-3.1.0.jar (核心包) 2) lucene- ...
- Lucene 07 - 对Lucene的索引库进行增删改查
目录 1 添加索引 2 删除索引 2.1 根据Term删除索引 2.2 删除全部索引(慎用) 3 更新索引 数据保存在关系型数据库中, 需要实现增.删.改.查操作; 索引保存在索引库中, 也需要实现增 ...
- 学习笔记CB011:lucene搜索引擎库、IKAnalyzer中文切词工具、检索服务、查询索引、导流、word2vec
影视剧字幕聊天语料库特点,把影视剧说话内容一句一句以回车换行罗列三千多万条中国话,相邻第二句很可能是第一句最好回答.一个问句有很多种回答,可以根据相关程度以及历史聊天记录所有回答排序,找到最优,是一个 ...
- Lucene系列二:Lucene(Lucene介绍、Lucene架构、Lucene集成)
一.Lucene介绍 1. Lucene简介 最受欢迎的java开源全文搜索引擎开发工具包.提供了完整的查询引擎和索引引擎,部分文本分词引擎(英文与德文两种西方语言).Lucene的目的是为软件开发人 ...
随机推荐
- Android Dialog-Dialog无法充满横屏且下方有间隔
自定义一个Dialog,写完布局后运行,发现Dialog无法充满屏幕,就像下边这样: 代码大致如下: Dialog dialog = new Dialog(this); dialog.requestW ...
- MySQL开发索引创建规范
1. [强制]业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引. 说明:不要以为唯一索引影响了insert速度,这个速度损耗可以忽略,但提高查找速度是明显的:另外,即使在应用层做了非 ...
- .NET MVC下的日志文件生成法
/// <summary> /// 写日志文件 /// </summary> /// <param name="Infos">日志内容</ ...
- git(8):常用命令
Git常用操作命令收集: 1) 远程仓库相关命令 检出仓库:$ git clone git://github.com/jquery/jquery.git 查看远程仓库:$ git remote -v ...
- 深入HBase架构解析(一)[转]
前记 公司内部使用的是MapR版本的Hadoop生态系统,因而从MapR的官网看到了这篇文文章:An In-Depth Look at the HBase Architecture,原本想翻译全文,然 ...
- 使用ViewPager和Fragment实现滑动导航
ViewPage是android-support-v4.jar包提供的用于页面滑动的库,android-support-v4.jar是google推荐使用的一个类库,在项目中使用之前,你必须其添加到项 ...
- 4. K-Means和K-Means++实现
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 前面3篇K-Means的博文从原理.优化 ...
- php 验证所传参数为必填的时候的验证逻辑
此段代码摘自lumen框架: xx/vendor/illuminate/validation/Validator.php /** * Validate that a required attribut ...
- calico集成详解
一.摘要 ======================================================================================= 包括三项: c ...
- SQLServer当数据导入平面文件
SQLServer当数据导入无发正常工作时候,可以尝试BULK命令操作 BULK INSERT [dbo].[test] FROM 'H:\testdb.csv' WITH( FIELDTERMINA ...