问题描述:把给定图片,用图片中最主要的三种颜色来表示该图片

k-means思想:

  1、选择k个点作为初始中心

  2、将每个点指派到最近的中心,形成k个簇cluster

  3、重新计算每个簇的中心

  4、如果簇中心发生明显变化或未达到最大迭代次数,则回到step2

  问题:初始点不对的时候,容易收敛到局部最优值

  解决办法:

    1、选择k个点作为初始中心——canopy,模拟退火,贝叶斯准则

    2、将每个点指派到最近的中心,形成k个簇cluster

    3、重新计算每个簇的中心

    4、如果簇中心发生了明显的变化或未达到最大迭代次数,则回到step2

  例子:给你一幅图像,找出其中最主要的三种颜色,并将图片用三种最主要的颜色表示出来

# -*- coding: utf-8 -*-
# https://github.com/ZeevG/python-dominant-image-colour
# commented by heibanke from PIL import Image
import random
import numpy class Cluster(object):
"""
pixels: 主要颜色所依据的像素点
centroid: 主要颜色的RGB值
"""
def __init__(self):
self.pixels = []
self.centroid = None
#cluster有两个属性,centroid表示聚类中心,pixels表示依附于该聚类中心的那些像素点
#每个聚类中心都是一个单独的Cluster对象
def addPoint(self, pixel):
self.pixels.append(pixel) def setNewCentroid(self):
"""
通过pixels均值重新计算主要颜色
"""
R = [colour[0] for colour in self.pixels]
G = [colour[1] for colour in self.pixels]
B = [colour[2] for colour in self.pixels] R = sum(R) / len(R)
G = sum(G) / len(G)
B = sum(B) / len(B) self.centroid = (R, G, B)
self.pixels = [] return self.centroid class Kmeans(object): def __init__(self, k=3, max_iterations=5, min_distance=5.0, size=400):
"""
k: 主要颜色的分类个数
max_iterations: 最大迭代次数
min_distance: 当新的颜色和老颜色的距离小于该最小距离时,提前终止迭代
size: 用于计算的图像大小
"""
self.k = k
self.max_iterations = max_iterations
self.min_distance = min_distance
self.size = (size, size) def run(self, image):
self.image = image
#生成缩略图,节省运算量
self.image.thumbnail(self.size)
self.pixels = numpy.array(image.getdata(), dtype=numpy.uint8)
self.clusters = [None]*self.k
self.oldClusters = None
#在图像中随机选择k个像素作为初始主要颜色
randomPixels = random.sample(self.pixels, self.k) for idx in range(self.k):
self.clusters[idx] = Cluster()#生成idx个Cluster的对象
self.clusters[idx].centroid = randomPixels[idx]#每个centroid是随机采样得到的 iterations = 0 #开始迭代
while self.shouldExit(iterations) is False:
self.oldClusters= [cluster.centroid for cluster in self.clusters]
print iterations #对pixel和self.clusters中的主要颜色分别计算距离,将pixel加入到离它最近的主要颜色所在的cluster中
for pixel in self.pixels:
self.assignClusters(pixel)
#对每个cluster中的pixels,重新计算新的主要颜色
for cluster in self.clusters:
cluster.setNewCentroid() iterations += 1 return [cluster.centroid for cluster in self.clusters] def assignClusters(self, pixel):
shortest = float('Inf')
for cluster in self.clusters:
distance = self.calcDistance(cluster.centroid, pixel)
if distance < shortest:
shortest = distance
nearest = cluster#nearest实际上是cluster的引用,不是复制
nearest.addPoint(pixel) def calcDistance(self, a, b):
result = numpy.sqrt(sum((a - b) ** 2))
return result def shouldExit(self, iterations): if self.oldClusters is None:
return False
#计算新的中心和老的中心之间的距离
for idx in range(self.k):
dist = self.calcDistance(
numpy.array(self.clusters[idx].centroid),
numpy.array(self.oldClusters[idx])
)
if dist < self.min_distance:
return True if iterations <= self.max_iterations:
return False return True # The remaining methods are used for debugging
def showImage(self):
"""
显示原始图像
"""
self.image.show() def showCentroidColours(self):
"""
显示主要颜色
"""
for cluster in self.clusters:
image = Image.new("RGB", (200, 200), cluster.centroid)
image.show() def showClustering(self):
"""
将原始图像的像素完全替换为主要颜色后的效果
"""
localPixels = [None] * len(self.image.getdata()) #enumerate用于既需要遍历元素下边也需要得到元素值的情况,用for循环比较麻烦
for idx, pixel in enumerate(self.pixels):
shortest = float('Inf') #正无穷
for cluster in self.clusters:
distance = self.calcDistance(
cluster.centroid,
pixel
)
if distance < shortest:
shortest = distance
nearest = cluster localPixels[idx] = nearest.centroid w, h = self.image.size
localPixels = numpy.asarray(localPixels)\
.astype('uint8')\
.reshape((h, w, 3)) colourMap = Image.fromarray(localPixels)
return colourMap if __name__=="__main__":
from PIL import Image
import os k_image=Kmeans(k=3) #默认参数
path = './pics/'
fp = open('file_color.txt','w')
for filename in os.listdir(path):
print path+filename
try:
color = k_image.run(Image.open(path+filename))
# w_image = k_image.showClustering()
w_image = k_image.showCentroidColours()
w_image.save(path+'mean_'+filename,'jpeg')
fp.write('The color of '+filename+' is '+str(color)+'\n')
except:
print "This file format is not support"
fp.close()

处理前的图片:

  

  处理后的图片:

  

参考:http://blog.zeevgilovitz.com/detecting-dominant-colours-in-python/

k-means处理图片的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  3. 快速查找无序数组中的第K大数?

    1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高 ...

  4. 网络费用流-最小k路径覆盖

    多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. numpy.ones_like(a, dtype=None, order='K', subok=True)返回和原矩阵一样形状的1矩阵

    Return an array of ones with the same shape and type as a given array. Parameters: a : array_like Th ...

  6. 当我们在谈论kmeans(2)

        本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...

  7. scikit-learn包的学习资料

    http://scikit-learn.org/stable/modules/clustering.html#k-means http://my.oschina.net/u/175377/blog/8 ...

  8. HDU 3584 Cube (三维 树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3584 Cube Problem Description Given an N*N*N cube A,  ...

  9. Torch7学习笔记(二)nn Package

    神经网络Package [目前还属于草稿版,等我整个学习玩以后会重新整理] 模块Module module定义了训练神经网络需要的所有基础方法,并且是可以序列化的抽象类. module有两种状态变量: ...

  10. 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

随机推荐

  1. c++开发环境搭建

    >>>>>>>>>>>>>>>>>>>>>开发环境搭建<<&l ...

  2. POJ 3268 Silver Cow Party 最短路径+矩阵转换

    Silver Cow Party Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) T ...

  3. autopy的使用探索

    autopy这个包可以直接操作电脑的一些行为,比如点击,移动鼠标啥的,但是可能只使用于windows,用处有限,不过做个简单的游戏辅助还是可以的. 网上资料贼少,很多不能用的,现总结一些可以用的放在这 ...

  4. linux中convert用法

    转: 强大的convert命令 convert命令可以用来转换图像的格式,支持JPG, BMP, PCX, GIF, PNG, TIFF, XPM和XWD等类型,下面举几个例子:   convert  ...

  5. [UE4]蓝图函数库小结

    蓝图函数库的功能非常强劲,如果在项目中使用的话有时能达到事半功倍的效果. 蓝图函数库,Blueprint Function Library.可以非常方便的将代码中的函数暴露给所有的蓝图使用,同时也提供 ...

  6. Spark 编程模型(下)

    创建Pair RDD 什么是Pair RDD 创建Pair RDD Pair RDD的转化操作 Pair RDD的转化操作1 在xshell启动 reduceByKey的意思是把相同的key的valu ...

  7. Hive环境的安装部署(完美安装)(集群内或集群外都适用)(含卸载自带mysql安装指定版本)

    Hive环境的安装部署(完美安装)(集群内或集群外都适用)(含卸载自带mysql安装指定版本) Hive 安装依赖 Hadoop 的集群,它是运行在 Hadoop 的基础上. 所以在安装 Hive 之 ...

  8. python实现定时发送系列

    1.发送邮件实现 2.定时任务实现 3.定时发送邮件实现 4.微信定时发送信息 详细源代码见:https://github.com/15387062910/timing_send 参考: 廖雪峰博客 ...

  9. selenium+python自动化96-执行jquery报:$ is not defined

    前言 背景介绍:做wap页面自动化的时候,把url地址直接输入到浏览器(chrome浏览器有手机wap模式)上测试,有个按钮死活点不到,用wap模式的触摸事件也无法解决,后来想用jquery去执行点击 ...

  10. PS前端

    学习使用Photoshop的基本使用,以及Photoshop中关于切图这一块的知识,目的是能熟练使用Photoshop查看UI设计师的设计效果图,同时利用Photoshop切图来制作专业html页面. ...