POJ2356 Find a multiple 抽屉原理(鸽巢原理)
题意:给你N个数,从中取出任意个数的数 使得他们的和 是 N的倍数;
在鸽巢原理的介绍里面,有例题介绍:设a1,a2,a3,……am是正整数的序列,试证明至少存在正数k和l,1<=k<=l<=m,是的和ak+ak+1+……+al是m的倍数,接下来开始证明:
构造一个序列s1=a1,s2=a1+a2,……,sm=a1+a2+……+am,那么会产生两种可能:
1:若有一个sn是m的倍数,那么定理成立:
2:假设上述的序列中没有任何一个元素是m的倍数,令rh ≡ sh mod m;其中h=1,2,……,m;我们已知上面的所有项都非m的倍数,得到s1模m的余数是r1,s2模m的余数是r2,同理往下类推,r是一个余数序列,在这里所有的余数都不为0,因为假设是不存在有m的倍数的,所以r序列的元素小于m,根据抽屉原理(鸽巢原理),m个余数在[1,m-]区间里的取值至少存在一对rh,rl,并且满足 rh=rk,即sh和sk满足
sk ≡ sh mod m,那么假设h>k,得到
sh-sk = (a1+a2+……+ah) - (a1+a2+……+ak)
sh - sk =ak+1 +ak+2 +……+ah ≡ 0 mod m(此处的k是序列a的下标)
证明到此结束;
那么熟悉根据抽屉原理(鸽巢原理),稍微动动脑筋便能做这道题目了
先处理出前k个数的sum[k] (1 <= k <= n) 同时对n进行取余操作,如果有一个sum[k]等于0,那么这个sum就是n的倍数,然后根据鸽巢原理,有n个余数r ,0 <= r <=n ,如果没有余数0,那么至少有两个余数是相同的,即这两个sum相减得到的差就是n的倍数,
#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set> #define ll long long #define eps 1e-7 #define inf 0xfffffff
const ll INF = 1ll<<61; using namespace std; //vector<pair<int,int> > G;
//typedef pair<int,int > P;
//vector<pair<int,int> > ::iterator iter;
//
//map<ll,int >mp;
//map<ll,int >::iterator p;
// int a[100012],mark[1000012],sum[100012]; void clear()
{
memset(a,0,sizeof(a));
memset(sum,0,sizeof(sum));
memset(mark,0,sizeof(mark));
} int main()
{
int n;
while(scanf("%d",&n)==1)
{
clear();
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i] = sum[i-1] + a[i];
sum[i] %= n;
mark[i] = 0;
}
for(int i=1;i<=n;i++)
{
if(sum[i]==0)
{
printf("%d\n",i);
for(int j=1;j<=i;j++)
{
printf("%d\n",a[j]);
}
break;
}
else if(mark[sum[i]])
{
printf("%d\n",i-mark[sum[i]]);
for(int j=mark[sum[i]]+1;j<=i;j++)
printf("%d\n",a[j]);
break;
}
mark[sum[i]]=i;
}
}
return EXIT_SUCCESS;
}
POJ2356 Find a multiple 抽屉原理(鸽巢原理)的更多相关文章
- [POJ2356]Find a multiple 题解(鸽巢原理)
[POJ2356]Find a multiple Description -The input contains N natural (i.e. positive integer) numbers ( ...
- poj2356 Find a multiple(抽屉原理|鸽巢原理)
/* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- ACM数论之旅14---抽屉原理,鸽巢原理,球盒原理(叫法不一又有什么关系呢╮(╯▽╰)╭)
这章没有什么算法可言,单纯的你懂了原理后会不会运用(反正我基本没怎么用过 ̄ 3 ̄) 有366人,那么至少有两人同一天出生(好孩子就不要在意闰年啦( ̄▽ ̄")) 有13人,那么至少有两人同一月 ...
- [POJ2356] Find a multiple 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8776 Accepted: 3791 ...
- [poj2356]--Find a multiple ——鸽巢原理
题意: 给定n个数,从中选取m个数,使得\(\sum | n\).本题使用Special Judge. 题解: 既然使用special judge,我们可以直接构造答案. 首先构造在mod N剩余系下 ...
- poj Find a multiple【鸽巢原理】
参考:https://www.cnblogs.com/ACShiryu/archive/2011/08/09/poj2356.html 鸽巢原理??? 其实不用map但是习惯了就打的map 以下C-c ...
- poj 2356 Find a multiple(鸽巢原理)
Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...
随机推荐
- 嵌入式开发之zynq---Zynq PS侧DMA驱动
http://xilinx.eetrend.com/blog/10760 http://xilinx.eetrend.com/blog/10787
- VMware Workstation与VM ware Esxi使用OVF文件交互
实验环境: VMware Workstation 12 Pro 版本 VMware Esxi 6.0.0 版本 VMware Workstation安装一个Linux系统,把VMware Wor ...
- Cisco配置VLAN+DHCP中继代理+NAT转发上网
实验环境: 路由器 使得TP-link 设置NAT转发使用,tp-link路由器网关设置成 192.168.30.254 (核心层)Cisco 3550三层交换机(型号C3550-I5Q3L2-M)配 ...
- Hadoop学习笔记——安装Hadoop
sudo mv /home/common/下载/hadoop-2.7.2.tar.gz /usr/local sudo tar -xzvf hadoop-2.7.2.tar.gz sudo mv ha ...
- objelement = event.target || event.srcElement;
objelement = event.target || event.srcElement; function updateProductVideo(e){ e = window.event || a ...
- What really happens when you navigate to a URL
As a software developer, you certainly have a high-level picture of how web apps work and what kinds ...
- Java初学者不可不知的MyEclipse的设置技巧(自动联想功能)
最近初学Java,正在使用MyEclipse来编写新的项目,刚开始打开MyEclipse感觉这个工具既陌生又熟悉,熟悉之处在于编辑器的几大共通之处它都具备,比如说基本的设置.编辑区.调试区都是类似的, ...
- SharePoint 2013 隐藏左边快速启动菜单栏(Hiding the Quick Launch Bar)
在SharePoint 2013默认网站页面中,很多时候,我们需要隐藏左边快速启动菜单栏,这时我们可以通过下面的样式来实现隐藏它. 和SharePoint 2010不太一样,方法改了,不过性质是一样的 ...
- linux cfs调度器_理论模型
参考资料:<调度器笔记>Kevin.Liu <Linux kernel development> <深入Linux内核架构> version: 2.6.32.9 下 ...
- git branch 命令
1.git init 该命令执行之后并没有创建branch 2.git add 添加文件,这时branch 也还没生成.git branch name也没用 3.git commit 提交到git r ...