Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 34301    Accepted Submission(s): 17010

Problem Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid. 

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.

题意

存钱罐里有一些钱(硬币)。所有硬币的重量已知,空存钱罐的质量e,装有钱的存钱罐的质量为f,有n行,每行代表一种硬币,每行的第一个数p表示硬币的面值,第二个数w表示硬币的重量。

对于给定总重量的硬币,所能得到的最少金额。如果无法恰好得到给定的重量。

思路

算是完全背包模板吧,求出来给出来的硬币的最小值,把原来的模板里的max换成了min ,对dp数组赋予一个很大的初始值(dp【0】还是0,保证所有状态都是从0转移来的)。最后判断能不能转移到f-e的状态即可

AC代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#define ll long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x3f3f3f3f
const double E=exp(1);
const int maxn=1e4+10;
using namespace std;
int p[maxn],w[maxn];
int dp[maxn];
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
int t;
cin>>t;
int n;
int e,f;
while(t--)
{
ms(p);
ms(w);
ms(dp);
cin>>e>>f;
cin>>n;
for(int i=0;i<n;i++)
cin>>p[i]>>w[i];//p->value;w->size
int res=f-e;
for(int i=1;i<maxn;i++)
dp[i]=INT_MAX/2;
for(int i=0;i<n;i++)
for(int j=w[i];j<=res;j++)
dp[j]=min(dp[j],dp[j-w[i]]+p[i]);
if(dp[res]==INT_MAX/2)
cout<<"This is impossible."<<endl;
else
cout<<"The minimum amount of money in the piggy-bank is "<<dp[res]<<"."<<endl;
}
return 0;
}

HDU 1114:Piggy-Bank(完全背包)的更多相关文章

  1. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  2. HDU 1114 Piggy-Bank(完全背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题目大意:根据储钱罐的重量,求出里面钱最少有多少.给定储钱罐的初始重量,装硬币后重量,和每个对应 ...

  3. HDU - 1114 Piggy-Bank 【完全背包】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1114 题意 给出一个储钱罐 不知道里面有多少钱 但是可以通过重量来判断 先给出空储钱罐的重量 再给出装 ...

  4. 题解报告:hdu 1114 Piggy-Bank(完全背包恰好装满)

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  5. hdu(1114)——Piggy-Bank(全然背包)

    唔..近期在练基础dp 这道题挺简单的(haha).可是我仅仅想说这里得注意一个细节. 首先题意: 有T组例子,然后给出储蓄罐的起始重量E,结束重量F(也就是当它里面存满了零钱的时候).然后给你一个数 ...

  6. HDU 1114 Piggy-Bank ——(完全背包)

    差不多是一个裸的完全背包,只是要求满容量的最小值而已.那么dp值全部初始化为inf,并且初始化一下dp[0]即可.代码如下: #include <stdio.h> #include < ...

  7. HDU - 1114 Piggy-Bank(完全背包讲解)

    题意:背包重量为F-E,有N种硬币,价值为Pi,重量为Wi,硬币个数enough(无穷多个),问若要将背包完全塞满,最少需要多少钱,若塞不满输出“This is impossible.”. 分析:完全 ...

  8. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  9. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  10. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

随机推荐

  1. a 样式重置 常见用法

    样式重置 a:link, a:visited, a:hover, a:active{   color: #fff;   text-decoration: none; }   常见用法  ( rel=& ...

  2. PHP求并集,交集,差集

    PHP求并集,交集,差集 一.总结 一句话总结:在php中如果我想要对两个数组进行如并集.交集和差集操作,我们可直接使用php自带的函数来操作如array_merge(),array_intersec ...

  3. 16 Managing Undo

    16 Managing Undo 从Oracle11g开始,在默认安装中oracle会自动管理undo, 典型安装中不需要DBA介入配置,然而,如果选择了flash back特性,你就需要进行一些un ...

  4. python打印cookies获取cookie

    def test_002_buy_ticket(self): data = [{"}] print(data) data = json.dumps(data) cookies = self. ...

  5. Confluence 连接到一 LDAP 目录,权限对本地用户组设置为只读

    https://www.cwiki.us/display/CONFLUENCEWIKI/Connecting+to+an+LDAP+Directory

  6. BST(二叉排序树)的插入与删除

    值得一说的是删除操作,删除操作我们分为三种情况: 1.要删的节点有两个孩子: 找到左子树中的最大值或者右子树中的最小值所对应的节点,记为node,并把node的值赋给要删除的节点del,然后删除nod ...

  7. hdu-2509-反nim博弈

    Be the Winner Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  8. 守护进程的创建(syslog函数)

    守护进程(daemon)是指在后台运行的,没有控制终端与之相连的进程.它独立于控制终端,通常周期性的执行某种任务. 守护进程是一种很有用的进程.Linux的大多数服务器就是用守护进程的方式实现的,如I ...

  9. Taffy自动化测试框架Web开发,Python Flask实践详解

    1. 前言 最近为Taffy自动化测试框架写了个页面,主要实现了用例管理.执行,测试报告查看管理.发送邮件及配置等功能.   本页面适用所有基于taffy/nose框架编写的自动化测试脚本,或基于un ...

  10. 使用简单的python语句编写爬虫 定时拿取信息并存入txt

    # -*- coding: utf-8 -*- #解决编码问题import urllibimport urllib2import reimport osimport time page = 1url ...