一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数。
例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数。
 
Input
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
Output
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。

无论连续不连续,设si为前i个数的和,那么如果si%N==0,那么前i个数就满足了条件。

如果不存在si%N==0,那么从s1到sN这N个数对N取余,范围肯定是0-N-1,但是前面已经说了没有=0的情况,所以范围相当于缩减成1 - N-1

那么也就相当于N个余数放到N-1个框中,肯定有两个在一起。也就是存在i!=j,(sj-si)%N==0.

也就是说,不存在No solution的情况。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+; int s[maxn],sum[maxn];
int pos[maxn];
int main()
{
int n;scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&s[i]);
for(int i=;i<=n;i++) sum[i] = (sum[i-] + s[i])%n;
//for(int i=1;i<=n;i++) printf("%d ",sum[i]);
int ans=;
for(int i=;i<=n;i++)
if(sum[i] == )
{
ans=i;break;
}
if(sum[ans] ==)//这个是如果前n项和==0了 就找到和是N的倍数了
{
printf("%d\n",ans);
for(int i=;i<=ans;i++)
printf("%d\n",s[i]);
return ;
}//数据有点儿水啊 这里直接就过了 for(int i=;i<=n;i++)
{
//因为上面已经统计过了 和为0的情况
//这里面就不可能出现和为0的情况了 只会出现两个数的和相同的情况
if(pos[sum[i]])//如果之前存在了
{
printf("%d\n",i - pos[sum[i]]);// 比如sum[2] =2 ,sum[7] =2
//那么就有从3到7 5个数
ans= pos[sum[i]]+;//ans 刚开始就等于3
while(ans<=i)
{
printf("%d\n",s[ans]);
}
return ;
} pos[sum[i]] = i; }
}

51nod 1103 N的倍数的更多相关文章

  1. 51nod 1103 N的倍数(抽屉原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...

  2. 51nod 1103 N的倍数 (鸽巢原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...

  3. 51nod 1103 N的倍数 思路:抽屉原理+前缀和

    题目: 这是一道很神奇的题目,做法非常巧妙.巧妙在题目要求n个数字,而且正好要求和为n的倍数. 思路:用sum[i]表示前i个数字的和%n.得到sum[ 1-N ]共N个数字. N个数字对N取模,每个 ...

  4. AC日记——N的倍数 51nod 1103

    1103 N的倍数 思路: 先计算出前缀和: 然后都%n: 因为有n个数,所以如果没有sum[i]%n==0的化,一定有两个取模后的sum相等: 输出两个sum中间的数就好: 来,上代码: #incl ...

  5. 51nod 1103:N的倍数 抽屉原理

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...

  6. 1103 N的倍数

    1103 N的倍数  题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得 ...

  7. 51nod 1103【鸽巢原理】

    思路: 这道题嘛有些弯还是要转的,比如你说让你搞n的倍数,你别老老实实照她的意思去啊,倍数可以除法,取膜 . 因为n个数我们可以求前缀和然后取膜,对n取膜的话有0-n-1种情况,所以方案一定是有的,说 ...

  8. 51nod——T1103 N的倍数

    题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. ...

  9. 51nod-1103-抽屉原理

    1103 N的倍数  题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得 ...

随机推荐

  1. 【Fiddler】杂乱基础学习

    1.过滤fiddler筛选 打开fiddler>Tools>Fiddler Options>HTTPS>...from remote clients only,勾选这个选项就可 ...

  2. 学习Linux二(创建、删除文件和文件夹命令)

     转自:http://www.cnblogs.com/zf2011/archive/2011/05/17/2049155.html 今天学习了几个命令,是创建.删除文件和文件夹的,在linux里,文件 ...

  3. 混淆矩阵在Matlab中PRtools模式识别工具箱的应用

    声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. 混淆矩阵是模式识别中的常用工具,在PRTools工具箱中有直接 ...

  4. excel用法

    1:求大于某一值的个数:使用COUNTIF(区间,标准)    要大写 =COUNTIF(B2:B48,">=95") 2:求某一区间的个数用:大区间个数减小区间个数 =CO ...

  5. 包管理 ----- Linux操作系统rpm包安装方式步骤

    Linux操作系统rpm包安装方式步骤 2016年08月04日 07:00:26 阅读数:17140 转自 : http://os.51cto.com/art/201003/186467.htm 特别 ...

  6. MVC html.beginform & ajax.beginform

    1.指定表单提交方式和路径等 @using (Html.BeginForm("Index", "Home", FormMethod.Get, new { nam ...

  7. 机器学习理论基础学习14.2---线性动态系统-粒子滤波 particle filter

    一.背景 与卡曼滤波不同的是,粒子滤波假设隐变量之间(隐变量与观测变量之间)是非线性的,并且不满足高斯分布,可以是任意的关系. 求解的还是和卡曼滤波一样,但由于分布不明确,所以需要用采样的方法求解. ...

  8. pandas取dataframe特定行/列

    1. 按列取.按索引/行取.按特定行列取 import numpy as np from pandas import DataFrame import pandas as pd df=DataFram ...

  9. boost--序列化库serialization

    序列化可以把对象转化成一个字节流存储或者传输,在需要时再回复成与原始状态一致的等价对象.C++标准没有定义这个功能.boost.serialization以库的形式提供了这个功能,非常强大,可以序列化 ...

  10. Bootstrap学习笔记-布局

    Bootstrap学习笔记-布局 默认是响应式布局,就是你在改变页面的时候也不会出现乱的现象. <html><head> <meta charset="utf- ...