题目

Source

http://acm.hdu.edu.cn/showproblem.php?pid=5322

Description

Hope is a good thing, which can help you conquer obstacles in your life, just keep fighting, and solve the problem below.

In mathematics, the notion of permutation relates to the act of arranging all the members of a set into some sequence or order, or if the set is already ordered, rearranging (reordering) its elements, a process called permuting. These differ from combinations, which are selections of some members of a set where order is disregarded. For example, written as tuples, there are six permutations of the set {1,2,3}, namely: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1). These are all the possible orderings of this three element set. As another example, an anagram of a word, all of whose letters are different, is a permutation of its letters. In this example, the letters are already ordered in the original word and the anagram is a reordering of the letters.
There is a permutation A1,A2,...An, now we define its value as below:
For each Ai, if there exists a minimum j satisfies j>i and Aj>Ai , then connect an edge between Ai and Aj , so after we connect all the edges, there is a graph G, calculate the product of the number of nodes in each component as an integer P. The permutation value is P * P.Now, Mr. Zstu wants to know the sum of all the permutation value of n. In case the answer is very big, please output the answer mod 998244353.
Just in case some of you can’t understand, all the permutations of 3 are
1 2 3
1 3 2
2 3 1
2 1 3
3 1 2
3 2 1

Input

There are multiple test cases.
There are no more than 10000 test cases.
Each test case is an integer n(1≤n≤100000).

Output

For each test case, output the answer as described above.

Sample Input

1
2

Sample Output

1
5

分析

题目大概说,对于1到n这n个数的任何一个排列A可以这样计算其价值:对所有下标i找到最小的j满足j>i且A[j]>A[i],然后i和j之间连边,最后所有连通块个数之积的平方就是该排列的价值。问所有排列的价值和是多少。

  • 首先要得出这么一个结论:从下标1...x,如果下标x的数是最大的话,那么1...x-1就与x一起组成一个连通块了。
  • 然后,$dp[i]表示i个互不相同的数的所有排列的价值和$
  • 通过枚举最大数的位置j来转移:$dp[i]\ =\ \sum A_{i-1}^{j-1}j^2dp[i-j]$
  • 可以整理成卷积形式:$dp[i]\ =\ (i-1)! \times \sum (j^2\times ((i-j)!)^{-1}dp[i-j])$
  • 然后于是就能用FFT计算了,特别的是结果模998244353,直接用NTT即可;还有要利用CDQ分治加速,累加左半边已经求得的dp值对右半边的影响。时间复杂度$O(nlog^2n)$。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 262144 const int P=998244353; // 119 * 2 ^ 23 + 1
const int G=3; long long mul(long long x,long long y){
return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P;
}
long long qpow(long long x,long long k,long long p){
long long ret=1;
while(k){
if(k&1) ret=mul(ret,x);
k>>=1;
x=mul(x,x);
}
return ret;
} long long wn[25];
void getwn(){
for(int i=1; i<=21; ++i){
int t=1<<i;
wn[i]=qpow(G,(P-1)/t,P);
}
} int len;
void NTT(long long y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
int id=0;
for(int h=2; h<=len; h<<=1) {
++id;
for(int i=0; i<len; i+=h){
long long w=1;
for(int j=i; j<i+(h>>1); ++j){
long long u=y[j],t=mul(y[j+h/2],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/2]=u-t+P;
if(y[j+h/2]>=P) y[j+h/2]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-1){
for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
long long inv=qpow(len,P-2,P);
for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
}
}
void Convolution(long long A[],long long B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i]=B[i]=0;
} NTT(A,1); NTT(B,1);
for(int i=0; i<len; ++i){
A[i]=mul(A[i],B[i]);
}
NTT(A,-1);
} long long fact[MAXN]={1},fact_ine[MAXN]={1}; long long A[MAXN],B[MAXN];
long long d[MAXN]={1}; /*
d[i] = fact[i-1] * Σj*j * fact_ine[i-j]*d[i-j]
*/
void cdq(int l,int r){
if(l==r) return;
int mid=l+r>>1;
cdq(l,mid);
for(int i=l; i<=mid; ++i) A[i-l]=mul(fact_ine[i],d[i]);
for(int i=1; i<=r-l; ++i) B[i]=mul(i,i);
for(int i=mid-l+1; i<=r-l; ++i) A[i]=0;
Convolution(A,B,r-l+1);
for(int i=mid+1; i<=r; ++i){
d[i]+=mul(A[i-l],fact[i-1]);
d[i]%=P;
}
cdq(mid+1,r);
} int main(){
for(int i=1; i<=100000; ++i){
fact[i]=mul(fact[i-1],i);
fact_ine[i]=qpow(fact[i],P-2,P);
}
getwn();
cdq(0,100000);
int n;
while(~scanf("%d",&n)){
printf("%I64d\n",d[n]);
}
return 0;
}

HDU5322 Hope(DP + CDQ分治 + NTT)的更多相关文章

  1. Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)

    题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...

  2. hdu5322 Hope(dp+FFT+分治)

    hdu5322 Hope(dp+FFT+分治) hdu 题目大意:n个数的排列,每个数向后面第一个大于它的点连边,排列的权值为每个联通块大小的平方,求所有排列的权值和. 思路: 考虑直接设dp[i]表 ...

  3. 【BZOJ-3456】城市规划 CDQ分治 + NTT

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...

  4. bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...

  5. 【bzoj3672】[Noi2014]购票 斜率优化dp+CDQ分治+树的点分治

    题目描述  给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费 ...

  6. 斜率dp cdq 分治

    f[i] = min { f[j] + sqr(a[i] - a[j]) } f[i]= min { -2 * a[i] * a[j] + a[j] * a[j] + f[j] } + a[i] * ...

  7. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  8. bzoj1492--斜率优化DP+cdq分治

    显然在某一天要么花完所有钱,要么不花钱. 所以首先想到O(n^2)DP: f[i]=max{f[i-1],(f[j]*r[j]*a[i]+f[j]*b[i])/(a[j]*r[j]+b[j])},j& ...

  9. bzoj 2726 [SDOI2012]任务安排(斜率DP+CDQ分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2726 [题意] 将n个任务划分成若干个块,每一组Mi任务花费代价(T+sigma{ t ...

随机推荐

  1. MySQL主从同步延迟

    早上接到open-falcon报警,一台mysql从库同步延迟2w多秒,mysql版本比较老,用的5.1.37. 连接从库查找原因: show processlist一下,查看哪些线程在跑. 看到Ti ...

  2. Win7如何删除需要管理员权限才能删除的文件夹

    在Windows 7系统运行中.往往会遇到想要删除某个文件夹时,系统提示:文件夹访问被拒绝 你需要权限来执行此操作,如何才能删除此类文件夹呢? ------------------ --------- ...

  3. Spring中配置和读取多个Properties文件--转

    public class PropertiesFactoryBeanextends PropertiesLoaderSupportimplements FactoryBean, Initializin ...

  4. Java与MySQL的连接

    下载数据库驱动文件,解压并保存至任意位置 下载地址 新建Java项目,并将驱动文件添加到项目中 项目名右键-->构建路径-->配置构建路径-->添加外部Jar 在项目中新建类,编写代 ...

  5. avl树的操作证明

    以下用大O表示节点,ABC表示三个集合. 仅分析左子树的情况,因为对称,右子树的情况一样. 插入节点前 O /     \ O        A   /    \ B       C 插入节点后: O ...

  6. T-SQL实用查询之分析数据库表的大小

    IF OBJECT_ID('tempdb..#TB_TEMP_SPACE') IS NOT NULL DROP TABLE #TB_TEMP_SPACE GO CREATE TABLE #TB_TEM ...

  7. 【Alpha版本】 第一天 11.7

    一.站立式会议照片: 二.项目燃尽图: 三.项目进展: 成 员 前段时间完成任务 今天完成任务 明天要做任务 问题困难 心得体会 胡泽善 部分APP功能 我要招聘详情的展示 注册界面的实现 一些特殊效 ...

  8. ReactiveCocoa源码拆分解析(三)

    (整个关于ReactiveCocoa的代码工程可以在https://github.com/qianhongqiang/QHQReactive下载) 这一章节主要讨论信号的“冷”与“热” 在RAC的世界 ...

  9. HTTP参数污染

    HTTP Parameter Pollution简称HPP,所以有的人也称之为“HPP参数污染”. 一篇很不错关于HPP参数污染的文章:http://www.paigu.com/a/33478/235 ...

  10. Java中的Serializable接口transient关键字,及字节、字符、对象IO

    1.什么是序列化和反序列化Serialization是一种将对象转为为字节流的过程:deserialization是将字节流恢复为对象的过程. 2.什么情况下需要序列化a)当你想把的内存中的对象保存到 ...