题目

Source

http://acm.hdu.edu.cn/showproblem.php?pid=5322

Description

Hope is a good thing, which can help you conquer obstacles in your life, just keep fighting, and solve the problem below.

In mathematics, the notion of permutation relates to the act of arranging all the members of a set into some sequence or order, or if the set is already ordered, rearranging (reordering) its elements, a process called permuting. These differ from combinations, which are selections of some members of a set where order is disregarded. For example, written as tuples, there are six permutations of the set {1,2,3}, namely: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1). These are all the possible orderings of this three element set. As another example, an anagram of a word, all of whose letters are different, is a permutation of its letters. In this example, the letters are already ordered in the original word and the anagram is a reordering of the letters.
There is a permutation A1,A2,...An, now we define its value as below:
For each Ai, if there exists a minimum j satisfies j>i and Aj>Ai , then connect an edge between Ai and Aj , so after we connect all the edges, there is a graph G, calculate the product of the number of nodes in each component as an integer P. The permutation value is P * P.Now, Mr. Zstu wants to know the sum of all the permutation value of n. In case the answer is very big, please output the answer mod 998244353.
Just in case some of you can’t understand, all the permutations of 3 are
1 2 3
1 3 2
2 3 1
2 1 3
3 1 2
3 2 1

Input

There are multiple test cases.
There are no more than 10000 test cases.
Each test case is an integer n(1≤n≤100000).

Output

For each test case, output the answer as described above.

Sample Input

1
2

Sample Output

1
5

分析

题目大概说,对于1到n这n个数的任何一个排列A可以这样计算其价值:对所有下标i找到最小的j满足j>i且A[j]>A[i],然后i和j之间连边,最后所有连通块个数之积的平方就是该排列的价值。问所有排列的价值和是多少。

  • 首先要得出这么一个结论:从下标1...x,如果下标x的数是最大的话,那么1...x-1就与x一起组成一个连通块了。
  • 然后,$dp[i]表示i个互不相同的数的所有排列的价值和$
  • 通过枚举最大数的位置j来转移:$dp[i]\ =\ \sum A_{i-1}^{j-1}j^2dp[i-j]$
  • 可以整理成卷积形式:$dp[i]\ =\ (i-1)! \times \sum (j^2\times ((i-j)!)^{-1}dp[i-j])$
  • 然后于是就能用FFT计算了,特别的是结果模998244353,直接用NTT即可;还有要利用CDQ分治加速,累加左半边已经求得的dp值对右半边的影响。时间复杂度$O(nlog^2n)$。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 262144 const int P=998244353; // 119 * 2 ^ 23 + 1
const int G=3; long long mul(long long x,long long y){
return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P;
}
long long qpow(long long x,long long k,long long p){
long long ret=1;
while(k){
if(k&1) ret=mul(ret,x);
k>>=1;
x=mul(x,x);
}
return ret;
} long long wn[25];
void getwn(){
for(int i=1; i<=21; ++i){
int t=1<<i;
wn[i]=qpow(G,(P-1)/t,P);
}
} int len;
void NTT(long long y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
int id=0;
for(int h=2; h<=len; h<<=1) {
++id;
for(int i=0; i<len; i+=h){
long long w=1;
for(int j=i; j<i+(h>>1); ++j){
long long u=y[j],t=mul(y[j+h/2],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/2]=u-t+P;
if(y[j+h/2]>=P) y[j+h/2]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-1){
for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
long long inv=qpow(len,P-2,P);
for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
}
}
void Convolution(long long A[],long long B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i]=B[i]=0;
} NTT(A,1); NTT(B,1);
for(int i=0; i<len; ++i){
A[i]=mul(A[i],B[i]);
}
NTT(A,-1);
} long long fact[MAXN]={1},fact_ine[MAXN]={1}; long long A[MAXN],B[MAXN];
long long d[MAXN]={1}; /*
d[i] = fact[i-1] * Σj*j * fact_ine[i-j]*d[i-j]
*/
void cdq(int l,int r){
if(l==r) return;
int mid=l+r>>1;
cdq(l,mid);
for(int i=l; i<=mid; ++i) A[i-l]=mul(fact_ine[i],d[i]);
for(int i=1; i<=r-l; ++i) B[i]=mul(i,i);
for(int i=mid-l+1; i<=r-l; ++i) A[i]=0;
Convolution(A,B,r-l+1);
for(int i=mid+1; i<=r; ++i){
d[i]+=mul(A[i-l],fact[i-1]);
d[i]%=P;
}
cdq(mid+1,r);
} int main(){
for(int i=1; i<=100000; ++i){
fact[i]=mul(fact[i-1],i);
fact_ine[i]=qpow(fact[i],P-2,P);
}
getwn();
cdq(0,100000);
int n;
while(~scanf("%d",&n)){
printf("%I64d\n",d[n]);
}
return 0;
}

HDU5322 Hope(DP + CDQ分治 + NTT)的更多相关文章

  1. Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)

    题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...

  2. hdu5322 Hope(dp+FFT+分治)

    hdu5322 Hope(dp+FFT+分治) hdu 题目大意:n个数的排列,每个数向后面第一个大于它的点连边,排列的权值为每个联通块大小的平方,求所有排列的权值和. 思路: 考虑直接设dp[i]表 ...

  3. 【BZOJ-3456】城市规划 CDQ分治 + NTT

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...

  4. bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...

  5. 【bzoj3672】[Noi2014]购票 斜率优化dp+CDQ分治+树的点分治

    题目描述  给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费 ...

  6. 斜率dp cdq 分治

    f[i] = min { f[j] + sqr(a[i] - a[j]) } f[i]= min { -2 * a[i] * a[j] + a[j] * a[j] + f[j] } + a[i] * ...

  7. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  8. bzoj1492--斜率优化DP+cdq分治

    显然在某一天要么花完所有钱,要么不花钱. 所以首先想到O(n^2)DP: f[i]=max{f[i-1],(f[j]*r[j]*a[i]+f[j]*b[i])/(a[j]*r[j]+b[j])},j& ...

  9. bzoj 2726 [SDOI2012]任务安排(斜率DP+CDQ分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2726 [题意] 将n个任务划分成若干个块,每一组Mi任务花费代价(T+sigma{ t ...

随机推荐

  1. 20145204&20145212信息安全系统实验三报告

    实时系统的移植 实验目的与要求 1.根据实验指导书进行实时软件的安装 2.配置实验环境,并对软件进行测试. 3.正确使用连接线等仪器,注意保护试验箱. 实验内容与步骤 1.连接 arm 开发板 连接实 ...

  2. cURL函数

    PHP的cURL函数是通过libcurl库与服务器使用各种类型的协议进行连接和通信的,curl目前支持HTTP GET .HTTP POST .HTTPS认证.FTP上传.HTTP基于表单的上传.co ...

  3. 用C#开发ActiveX控件,并使用web调用

    入职差不多两个月了,由学生慢慢向职场人做转变,也慢慢的积累知识,不断的更新自己.最近的一个项目里边,涉及到的一些问题,因为SDK提供的只是winform才能使用了,但是有需求咱们必须得完成啊,所以涉及 ...

  4. linux零基础入门总结

    啊,notepad++贴过来怎么对齐格式这么糟糕呢? #root用户 $普通用户   linux命令 清屏clear翻页清屏  CRT中ctrl+L    reset"清空 CRT中不起作用 ...

  5. Login Reference for PhotoSomething

    Android Background Processing with Handlers and AsyncTask and Loaders - Tutorial http://www.vogella. ...

  6. Swift3.0P1 语法指南——控制流

    原档:https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programmi ...

  7. sql 获取一批指定范围且不重复的随机数

    declare @M int,@N int set @m=10 set @n=1 select top 10 cast(rand(checksum(newid()))*(@M-@N)+@n as in ...

  8. BZOJ1264——[AHOI2006]基因匹配Match

    1.题意,求最长公共子序列,每个数字在序列中都出现5次 2.分析:最长公共子序列的标准解法是dp,$O(n^2)$过不了的,然后我们发现判断哪两个位置优化的地方用$5n$就可以搞定了,那么我们用BIT ...

  9. TouchSlide1.1,手机上的幻灯片

    TouchSlide 是纯javascript打造的触屏滑动特效插件 http://pan.baidu.com/s/1bpoWNin 官网:http://www.superslide2.com/Tou ...

  10. windows7下php5.4成功安装imageMagick,及解决php imagick常见错误问题。(phpinfo中显示不出来是因为:1.imagick软件本身、php本身、php扩展三方版本要一致,2.需要把CORE_RL_*.dll多个文件放到/php/目录下面)

    windows7下   php5.4成功安装imageMagick . (phpinfo中显示不出来是因为:1.软件本身.php本身.php扩展三方版本要一致,2.需要把CORE_RL_*.dll多个 ...