pandas 学习(1): pandas 数据结构之Series
1. Series
Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index)。
1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1)。
# 引入Series和DataFrame
In [16]: from pandas import Series,DataFrame
In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [19]: ser1
Out[19]:
0 1
1 2
2 3
3 4
dtype: int64
1.2 当要生成一个指定索引的Series 时候,可以这样:
# 给index指定一个list
In [23]: ser2 = Series(range(4),index = ["a","b","c","d"]) In [24]: ser2
Out[24]:
a 0
b 1
c 2
d 3
dtype: int64
1.3 也可以通过字典来创建Series对象
In [45]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000} In [46]: ser3 = Series(sdata)
# 可以发现,用字典创建的Series是按index有序的
In [47]: ser3
Out[47]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
在用字典生成Series的时候,也可以指定索引,当索引中值对应的字典中的值不存在的时候,则此索引的值标记为Missing,NA,并且可以通过函数(pandas.isnull,pandas.notnull)来确定哪些索引对应的值是没有的。
In [48]: states = ['California', 'Ohio', 'Oregon', 'Texas'] In [49]: ser3 = Series(sdata,index = states) In [50]: ser3
Out[50]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
# 判断哪些值为空
In [51]: pd.isnull(ser3)
Out[51]:
California True
Ohio False
Oregon False
Texas False
dtype: bool In [52]: pd.notnull(ser3)
Out[52]:
California False
Ohio True
Oregon True
Texas True
dtype: bool
1.4 访问Series中的元素和索引:
# 访问索引为"a"的元素
In [25]: ser2["a"]
Out[25]: 0
# 访问索引为"a","c"的元素
In [26]: ser2[["a","c"]]
Out[26]:
a 0
c 2
dtype: int64
# 获取所有的值
In [27]: ser2.values
Out[27]: array([0, 1, 2, 3])
# 获取所有的索引
In [28]: ser2.index
Out[28]: Index([u'a', u'b', u'c', u'd'], dtype='object')
1.5 简单运算
在pandas的Series中,会保留NumPy的数组操作(用布尔数组过滤数据,标量乘法,以及使用数学函数),并同时保持引用的使用
In [34]: ser2[ser2 > 2]
Out[34]:
a 64
d 3
dtype: int64 In [35]: ser2 * 2
Out[35]:
a 128
b 2
c 4
d 6
dtype: int64 In [36]: np.exp(ser2)
Out[36]:
a 6.235149e+27
b 2.718282e+00
c 7.389056e+00
d 2.008554e+01
dtype: float64
1.6 Series的自动对齐
Series的一个重要功能就是自动对齐(不明觉厉),看看例子就明白了。 差不多就是不同Series对象运算的时候根据其索引进行匹配计算。
# ser3 的内容
In [60]: ser3
Out[60]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
# ser4 的内容
In [61]: ser4
Out[61]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
# 相同索引值的元素相加
In [62]: ser3 + ser4
Out[62]:
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64
1.7 命名
Series对象本身,以及索引都有一个 name 属性
In [64]: ser4.index.name = "state" In [65]: ser4.name = "population" In [66]: ser4
Out[66]:
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
pandas 学习(1): pandas 数据结构之Series的更多相关文章
- python之pandas学习笔记-pandas数据结构
pandas数据结构 pandas处理3种数据结构,它们建立在numpy数组之上,所以运行速度很快: 1.系列(Series) 2.数据帧(DataFrame) 3.面板(Panel) 关系: 数据结 ...
- pandas 学习 第3篇:Series - 数据处理(应用、分组、滚动、扩展、指数加权移动平均)
序列内置一些函数,用于循环对序列的元素执行操作. 一,应用和转换函数 应用apply 对序列的各个元素应用函数: Series.apply(self, func, convert_dtype=True ...
- pandas 学习 第2篇:Series -(创建,属性,转换和索引)
序列(Series)是由一组数据(各种NumPy数据类型),以及一组与之相关的数据标签(索引)组成,序列不要求数据类型是相同的. 序列是一个一维数组,只有一个维度(或称作轴)是行(row),在访问序列 ...
- 6.2Python数据处理篇之pandas学习系列(二)Series数据类型
目录 目录 (一)Series的组成 (二)Series的创建 1.从标量中创建Series数据 2.从列表中创建Series数据 3.从字典中创建Series数据 4.从ndarry中创建Serie ...
- Pandas 学习笔记
Pandas 学习笔记 pandas 由两部份组成,分别是 Series 和 DataFrame. Series 可以理解为"一维数组.列表.字典" DataFrame 可以理解为 ...
- pandas库学习笔记(一)Series入门学习
Pandas基本介绍: pandas is an open source, BSD-licensed (permissive free software licenses) library provi ...
- pandas 的数据结构(Series, DataFrame)
Pandas 讲解 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标 ...
- pandas数据结构:Series/DataFrame;python函数:range/arange
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会 ...
- pandas 学习 第1篇:pandas基础 - 数据结构和数据类型
pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,是数据分析必不可少的五个包之一.pandas包含序列Series和数据框DataFrame两种最主要数据结构,索引 ...
随机推荐
- php工厂方法
<?php interface db{ function conn(); } interface Factory{ function createDB(); } class dbmysql im ...
- thinkphp 3.2与phpexcel
thinkphp版本:3.2 1.在http://phpexcel.codeplex.com/下载最新PHPExcel 2.把Classes目录下的文件(PHPExcel.php和PHPExcel文件 ...
- yii2 伪静态配置
原文地址: http://gblz.net/2015/242.html https://segmentfault.com/q/1010000003804408
- vtkAnimationCue、vtkCommand和vtkAVIWriter
1. 用vtkAnimationCue自定义一个vtkCustomAnimationCue类,用来实现球体逐渐张开的过程: 2.用vtkCommand自定义衍生一个vtkCustomAnimation ...
- 《征服 C 指针》摘录6:解读 C 的声明
一.混乱的声明——如何自然地理解 C 的声明? 通常,C 的声明 int hoge; 这样,使用“类型 变量名;”的形式进行书写. 可是,像“指向 int 的指针”类型的变量,却要像下面这样进行声明: ...
- .net 根据银行卡获取银行信息
using System; using System.Collections.Generic; using System.Linq; using System.Web; /// <summary ...
- phpstorm的使用教程
1.设置行号:file->settings->Editor->Appearance->Show line numbers 2.设置字体和背景 :file->setting ...
- Python函数讲解
Python函数
- redis集群之REDIS CLUSTER
redis集群之REDIS CLUSTER 时间 2016-04-11 17:05:00 NoSQL_博客园 原文 http://www.cnblogs.com/zhanchenjin/p/537 ...
- Hbuilder MUI 选择器(Picker)设置默认选项
mui 联动选择初始化很多人都遇到问题,就是setselectedvalue 不好用,实际上这个地方应该是有bug的 所以只能用setselectedindex 来实现 下面我是我的实现方式供大家参考 ...