pandas之iteration遍历
遍历是众多编程语言中必备的一种操作,比如 Python 语言通过 for 循环来遍历列表结构。那么 Pandas 是如何遍历 Series 和 DataFrame 结构呢?我们应该明确,它们的数据结构类型不同的,遍历的方法必然会存在差异。对于 Series 而言,您可以把它当做一维数组进行遍历操作;而像 DataFrame 这种二维数据表结构,则类似于遍历 Python 字典。
在 Pandas 中同样也是使用 for 循环进行遍历。通过for
遍历后,Series 可直接获取相应的 value,而 DataFrame 则会获取列标签。示例如下:
- import pandas as pd
- import numpy as np
- N=20
- df = pd.DataFrame({
- 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
- 'x': np.linspace(0,stop=N-1,num=N),
- 'y': np.random.rand(N),
- 'C': np.random.choice(['Low','Medium','High'],N).tolist(),
- 'D': np.random.normal(100, 10, size=(N)).tolist()
- })
- print(df)
- for col in df:
- print (col)
输出结果:
A
x
y
C
D
内置迭代方法
如果想要遍历 DataFrame 的每一行,我们下列函数:
- 1) iteritems():以键值对 (key,value) 的形式遍历;
- 2) iterrows():以 (row_index,row) 的形式遍历行;
- 3) itertuples():使用已命名元组的方式对行遍历。
下面对上述函数做简单的介绍:
1) iteritems()
以键值对的形式遍历 DataFrame 对象,以列标签为键,以对应列的元素为值。
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3'])
- for key,value in df.iteritems():
- print (key,value)
输出结果:
col1
0 0.561693
1 0.537196
2 0.882564
3 1.063245
Name: col1, dtype: float64
col2
0 -0.115913
1 -0.526211
2 -1.232818
3 -0.313741
Name: col2, dtype: float64
col3
0 0.103138
1 -0.655187
2 -0.101757
3 1.505089
Name: col3, dtype: float64
2) iterrows()
该方法按行遍历,返回一个迭代器,以行索引标签为键,以每一行数据为值。示例如下:
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.randn(3,3),columns = ['col1','col2','col3'])
- print(df)
- for row_index,row in df.iterrows():
- print (row_index,row)
输出结果:
col1 col2 col3
0 -0.319301 0.205636 0.247029
1 0.673788 0.874376 1.286151
2 0.853439 0.543066 -1.759512 0
col1 -0.319301
col2 0.205636
col3 0.247029
Name: 0, dtype: float64
1
col1 0.673788
col2 0.874376
col3 1.286151
Name: 1, dtype: float64
2
col1 0.853439
col2 0.543066
col3 -1.759512
Name: 2, dtype: float64
注意:iterrows() 遍历行,其中 0,1,2 是行索引而 col1,col2,col3 是列索引。
3) itertuples
itertuples() 同样将返回一个迭代器,该方法会把 DataFrame 的每一行生成一个元组,示例如下:
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.rand(3,3),columns = ['c1','c2','c3'])
- for row in df.itertuples():
- print(row)
输出结果:
Pandas(Index=0, c1=0.253902385555437, c2=0.9846386610838339, c3=0.8814786409138894)
Pandas(Index=1, c1=0.018667367298908943, c2=0.5954745800963542, c3=0.04614488622991075)
Pandas(Index=2, c1=0.3066297875412092, c2=0.17984210928723543, c3=0.8573031941082285)
迭代返回副本
迭代器返回的是原对象的副本,所以,如果在迭代过程中修改元素值,不会影响原对象,这一点需要大家注意。
看一组简单的示例:
- import pandas as pd
- import numpy as np
- df = pd.DataFrame(np.random.randn(3,3),columns = ['col1','col2','col3'])
- for index, row in df.iterrows():
- row['a'] = 15
- print (df)
输出结果:
col1 col2 col3
0 1.601068 -0.098414 -1.744270
1 -0.432969 -0.233424 0.340330
2 -0.062910 1.413592 0.066311
由上述示例可见,原对象df
没有受到任何影响。
pandas之iteration遍历的更多相关文章
- Pandas 中的遍历与并行处理
使用 pandas 处理数据时,遍历和并行处理是比较常见的操作了本文总结了几种不同样式的操作和并行处理方法. 1. 准备示例数据 import pandas as pd import numpy as ...
- pandas中的遍历方式速度对比
对一个20667行的xlsx文件进行遍历测试 import pandas as pd # 定义一个计算执行时间的函数作装饰器,传入参数为装饰的函数或方法 def print_execute_time( ...
- pandas的札记
导入导出数据 在导入,导出DataFrame数据时,会用到各种格式,分为 to_csv ;to_excel;to_hdf;to_sql;to_json;to_msgpack ;to_html;to_g ...
- 图的存储结构:邻接矩阵(邻接表)&链式前向星
[概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...
- doT.js——前端javascript模板引擎问题备忘录
我手里维护的一个项目,遇到一个问题:原项目的开发人员在Javascript中,大量的拼接HTML,导致代码极丑,极难维护.他们怎么能够忍受的了这么丑陋.拙劣的代码呢,也许是他们的忍受力极强,压根就没想 ...
- python笔记:#013#高级变量类型
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
- java代码之美(5)---guava之Multiset
guava之Multiset 一.概述 Guava提供了一个新集合类型Multiset,它可以多次添加相等的元素,且和元素顺序无关.Multiset继承于JDK的Cllection接口,而不是Set接 ...
- python基础自学 第五天(附带视频和相关资源)
数据类型 01.列表 List 是 python 中使用最频繁的数据类型,在其他语言中叫做数组 专门用于存储一串信息 列表用 [ ] 定义,数据之间用 , 分隔 列表的索引从 0 开始 补:索引就是数 ...
- Python中的高级变量类型
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
- Python中高级变量类型(列表,元组,字典,字符串,公共方法...)
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
随机推荐
- @Async异步注解的使用
@Async 简介 使用spring快速开启异步执行服务的注解 应用场景 同步:同步就是整个处理过程顺序执行,当各个过程都执行完毕,并返回结果. 异步: 异步调用则是只是发送了调用的指令,调用者无需等 ...
- Unity 2D 记录
Unity 2D 记录 1. 环境配置 1.1 下载安装unity hub和vs code 搜索unity hub 进行下载 https://unity.com/download 安装vs code ...
- Linux系统管理实战-DNS
DNS 域名解析 DNS(domain name system) 解析方式 1.本地解析 /etc/hosts 127.0.0.1 localhost localhost.localdomain lo ...
- 十大经典排序之快速排序(C++实现)
快速排序 通过一趟排序将待排序列分割成两部分,其中一部分记录的关键字均比另一部分记录的关键字小.之后分别对这两部分记录继续进行排序,以达到整个序列有序的目的. 思路: (1)选择基准:从数列中挑出一个 ...
- python常用数据类型方法详解
str类型 count('str',begin_index,ending_index) 在s字符串中统计str出现的次数 s.endswith('str') 判断s字符串是否是已str字符串结尾,为真 ...
- OSIDP-内存管理-07
专业术语 页框:内存中固定长度的块. 页:外存中固定长度的块. 段:外存中可变长度的块. 内存管理需求 重定位:程序从内存换出到外存后,再换回内存时,在内存空间中的位置和原先的位置有极大可能不相同.此 ...
- Java新手问题:输出结果的地方出现红色字体 请问是什么原因?
英文不是红色但中文是红色 请问各路大佬看一下是不是我代码出现了问题还是怎么滴.
- 错误小记录: python取余操作
-23 % 3 >>>1 23%-3 >>>-1 -23%-3 >>>-2 在计算机语言中,同号的整数运算,所有语言都遵循尽量让商小的原则,所以 ...
- selenium 模拟鼠标滚轮,滚动到可见的选项
self.wrap_driver.move_to_element(locator=const_xpath.monitor_select) #鼠标移动到某个区域target = self.driver. ...
- Spring源码分析之注册BeanDefinition
测试代码 public class ContextApplication { public static void main(String[] args) { ClassPathXmlApplicat ...