Cayley 公式的一些广为人知的证法:

  • Prufer 序列
  • Matrix-Tree 定理

然而我都不会 233,所以下面说一个生成函数角度的证法 .


我们知道 \(n\) 个节点的有标号无根树有 \(n^{n-2}\) 种,即 Cayley 公式 .

具体数学的做法是考虑递推完全图生成树个数,然后推出 EGF 的关系 .

那个递推太牛逼了,我就不这么干了,先令 \(g_n\) 表示 \(n\) 个节点的有标号有根树个数(\(g_0=0\)),且其 EGF 为 \(G(z)\) .

钦定一个根,它每一个儿子的 EGF 都与它相同, 就是 \(G(z)\) . 那么它的生成函数就是它儿子生成函数的一个组合, 即 \(\mathrm e^{G(z)}\) . 然后考虑根本身的影响,有

\[G(z)=z\mathrm e^{G(z)}
\]

即 \(G(z)\mathrm e^{-G(z)}=z\) .

现在只需要解出 \(G\) 来然后提取系数即可 .


方法 1

Lagrange 反演

若 \(F,G\) 互为复合逆(即 \(F(G(z))=G(F(z))=z\)),且 \(F,G\) 常系数为 \(0\),\(1\) 次项非 \(0\),则有

\[[z^n]G(z)=\dfrac1n[z^{-1}]F(z)^{-n}
\]

令 \(F(z)=z\mathrm e^{-z}\),那么易见 \(F,G\) 互为复合逆,于是 Lagrange 反演一下,得到

\[\begin{aligned}[x^n]G(z)&=\dfrac1n[z^{-1}]F(z)^{-n}\\&=\dfrac 1n[z^{n-1}]\left(z^nF(z)^{-n}\right)\\&=\dfrac1n[z^{n-1}]\left(\dfrac{z}{F(z)}\right)^n\\&=\dfrac1n[z^{n-1}]\mathrm e^{nz}\\&=n^{n-1}\end{aligned}
\]

于是有标号有根树个数为 \(n^{n-1}\),于是有标号无根树个数就是 \(n^{n-2}\),Cayley 公式得证 .


方法 2(不确保正确性,要是错了轻 D)

考虑广义指数函数 \(\mathcal E_t(z)\) 定义为

\[\mathcal E_t(z)=\sum_{n\ge 0}(tn+1)^{n-1}\dfrac{z^n}{n!}
\]

广义指数函数有一个性质叫

\[\mathcal E_t(z)^{-t}\ln\mathcal E_t(z)=z
\]

令 \(\mathcal D(z)=\ln\mathcal E_t(z)\),则上式可以化为

\[\dfrac{\mathcal D(z)}{\mathrm e^{t\mathcal D(z)}}=z
\]

移项得

\[\mathcal D(z)=z\mathrm e^{t\mathcal D(z)}
\]

取 \(t=1\) 就得到所需 EGF \(G\) .

于是 \(G(z)=\ln\mathcal E_1(z)\) .

然后 EGF \(\ln\) 其实相当于一个平移,所以就可以根据定义提取系数 \([z^n]G(z)=n^{n-1}\) .

同样,这表明有标号有根树个数为 \(n^{n-1}\),于是有标号无根树个数就是 \(n^{n-2}\),Cayley 公式又得证 .

UPD. 具体数学写法好像和我不太一样,我也知道 EGF 的微积分事实上是平移,然而这个做法看起来哪都对(

Cayley 公式的另一种证明的更多相关文章

  1. 树的计数 Prufer序列+Cayley公式

    先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...

  2. 树的计数 + prufer序列与Cayley公式(转载)

    原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...

  3. 树的计数 Prüfer编码与Cayley公式 学习笔记

    最近学习了Prüfer编码与Cayley公式,这两个强力的工具一般用于解决树的计数问题.现在博主只能学到浅层的内容,只会用不会证明. 推荐博客:https://blog.csdn.net/moreja ...

  4. P4981 父子 Cayley公式

    CayleyCayley公式的定义是这样的,对于n个不同的节点,能够组成的无根树(原来是无向连通图或者是有标志节点的树)的种数是n^(n-2)种.(这里让大家好理解一点,就写成了无根树,其实应该是一样 ...

  5. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  6. Ceva定理的四种证明方法

    ${\color{Teal} {Ceva定理}}$设$D.E.F$依次为三角形ABC的边$AB.BC.CA$的内点,记 $λ$=(A,B,D),$μ$=(B,C,E),$v$=(C,A,F) 求证:三 ...

  7. Dijkstra算法的另一种证明

    按:今天看Tanenbaum的计算机网络时讲到了Dijkstra算法.关于算法的正确性,<算法导论>给出了严格的证明.CLRS的证明基于一个通用的框架,非常清晰.今天只是随意想想是否有其他 ...

  8. [Bilingual] Different proofs of Jordan cardinal form (Jordan标准型的几种证明)

  9. 【数据结构与算法分析——C语言描述】第一章总结 引论

    这一章主要复习了一些数学知识,像指数.对数.模运算.级数公式:还有2种证明方法,归纳假设法和反证法.所幸以前学过,重新拾捡起来也比较轻松. 简要地复习了递归,提出了编写递归例程的四条基本法则: 基准情 ...

随机推荐

  1. KeyDB重量发布6.3.0开源版

    摘要:5月12日 KeyDB 社区隆重发布了 6.3.0开源版本,将与华为加拿大研究院DCS团队2021-2022年合作的成果,深度优化的企业版的能力贡献给了开源社区. KeyDB是目前Redis 分 ...

  2. Nginx基本配置与应用

    一.准备 1.1 环境准备 CentOS7软件环境 1.2 tomcat多实例 把/etc/profile.d/tomcat.sh中的变量注释了 #export TOMCAT_HOME=/usr/lo ...

  3. linux篇-centos7安装samba服务器

    1查看是否安装samba服务 2如果为空则没有安装,安装显示安装完成即成功 3查看samba状态 4查看配置文件的位置 5配置文件备份,直接传输到本地备份 6修改配置文件 Path共享目录位置 Val ...

  4. unity---寻路导航

    寻路导航 1. 简单的寻路 先搭建出类似下面的结构 将你想作为障碍的物体放入一个空物体中 进入空物体点击Static,仅勾选 Navigation Static 即可 依次点击 Window-> ...

  5. 每天一个 HTTP 状态码 201

    201 Created 201 Created 表示客户端的请求已经成功完成,结果是创建了一个新资源,通常用于响应「增删改查」里的「增」.如果是严格按照 RESEful style 的 API,那么当 ...

  6. 使用多线程提高REST服务器性能

    异步处理REST服务 1.使用Runnable异步处理Rest服务 释放主线程,启用副线程进行处理,副线程处理完成后直接返回请求 主要代码 import java.util.concurrent.Ca ...

  7. Java基础(1)——ThreadLocal

    1. Java基础(1)--ThreadLocal 1.1. ThreadLocal ThreadLocal是一个泛型类,当我们在一个类中声明一个字段:private ThreadLocal<F ...

  8. 线性求 $i^i$ 的做法

    线性求 \(i^i\) 的做法 方便起见,我们记 \(f_i=i^i\),\(i\) 的最小质因子为 \(p=\mathrm{minp}(i)\),第 \(i\) 个质数为 \(\mathrm{pr} ...

  9. 产品揭秘】来也Lead 2022产品亮点解读-RPA学习天地

    2022年4月26日,来也举行新品发布会.作为技术人员,花里胡哨的我且不说,我且说技术相关.整体架构"概念"整个平台覆盖了智能自动化的全生命周期包含:业务理解.流程创建.随处运行. ...

  10. GDKOI 2021 Day2 TG 总结

    又是爆炸的一天,炸多了本蒟蒻已经习以为常 但今天比昨天整整高了 40 分!!!!却还是没有 100 今天本蒟蒻本想模仿奆佬的打字速度,结果思路混乱让我无法开始 T1 不是吧怎么是期望 dp ,期望值怎 ...