Cayley 公式的一些广为人知的证法:

  • Prufer 序列
  • Matrix-Tree 定理

然而我都不会 233,所以下面说一个生成函数角度的证法 .


我们知道 \(n\) 个节点的有标号无根树有 \(n^{n-2}\) 种,即 Cayley 公式 .

具体数学的做法是考虑递推完全图生成树个数,然后推出 EGF 的关系 .

那个递推太牛逼了,我就不这么干了,先令 \(g_n\) 表示 \(n\) 个节点的有标号有根树个数(\(g_0=0\)),且其 EGF 为 \(G(z)\) .

钦定一个根,它每一个儿子的 EGF 都与它相同, 就是 \(G(z)\) . 那么它的生成函数就是它儿子生成函数的一个组合, 即 \(\mathrm e^{G(z)}\) . 然后考虑根本身的影响,有

\[G(z)=z\mathrm e^{G(z)}
\]

即 \(G(z)\mathrm e^{-G(z)}=z\) .

现在只需要解出 \(G\) 来然后提取系数即可 .


方法 1

Lagrange 反演

若 \(F,G\) 互为复合逆(即 \(F(G(z))=G(F(z))=z\)),且 \(F,G\) 常系数为 \(0\),\(1\) 次项非 \(0\),则有

\[[z^n]G(z)=\dfrac1n[z^{-1}]F(z)^{-n}
\]

令 \(F(z)=z\mathrm e^{-z}\),那么易见 \(F,G\) 互为复合逆,于是 Lagrange 反演一下,得到

\[\begin{aligned}[x^n]G(z)&=\dfrac1n[z^{-1}]F(z)^{-n}\\&=\dfrac 1n[z^{n-1}]\left(z^nF(z)^{-n}\right)\\&=\dfrac1n[z^{n-1}]\left(\dfrac{z}{F(z)}\right)^n\\&=\dfrac1n[z^{n-1}]\mathrm e^{nz}\\&=n^{n-1}\end{aligned}
\]

于是有标号有根树个数为 \(n^{n-1}\),于是有标号无根树个数就是 \(n^{n-2}\),Cayley 公式得证 .


方法 2(不确保正确性,要是错了轻 D)

考虑广义指数函数 \(\mathcal E_t(z)\) 定义为

\[\mathcal E_t(z)=\sum_{n\ge 0}(tn+1)^{n-1}\dfrac{z^n}{n!}
\]

广义指数函数有一个性质叫

\[\mathcal E_t(z)^{-t}\ln\mathcal E_t(z)=z
\]

令 \(\mathcal D(z)=\ln\mathcal E_t(z)\),则上式可以化为

\[\dfrac{\mathcal D(z)}{\mathrm e^{t\mathcal D(z)}}=z
\]

移项得

\[\mathcal D(z)=z\mathrm e^{t\mathcal D(z)}
\]

取 \(t=1\) 就得到所需 EGF \(G\) .

于是 \(G(z)=\ln\mathcal E_1(z)\) .

然后 EGF \(\ln\) 其实相当于一个平移,所以就可以根据定义提取系数 \([z^n]G(z)=n^{n-1}\) .

同样,这表明有标号有根树个数为 \(n^{n-1}\),于是有标号无根树个数就是 \(n^{n-2}\),Cayley 公式又得证 .

UPD. 具体数学写法好像和我不太一样,我也知道 EGF 的微积分事实上是平移,然而这个做法看起来哪都对(

Cayley 公式的另一种证明的更多相关文章

  1. 树的计数 Prufer序列+Cayley公式

    先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...

  2. 树的计数 + prufer序列与Cayley公式(转载)

    原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...

  3. 树的计数 Prüfer编码与Cayley公式 学习笔记

    最近学习了Prüfer编码与Cayley公式,这两个强力的工具一般用于解决树的计数问题.现在博主只能学到浅层的内容,只会用不会证明. 推荐博客:https://blog.csdn.net/moreja ...

  4. P4981 父子 Cayley公式

    CayleyCayley公式的定义是这样的,对于n个不同的节点,能够组成的无根树(原来是无向连通图或者是有标志节点的树)的种数是n^(n-2)种.(这里让大家好理解一点,就写成了无根树,其实应该是一样 ...

  5. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  6. Ceva定理的四种证明方法

    ${\color{Teal} {Ceva定理}}$设$D.E.F$依次为三角形ABC的边$AB.BC.CA$的内点,记 $λ$=(A,B,D),$μ$=(B,C,E),$v$=(C,A,F) 求证:三 ...

  7. Dijkstra算法的另一种证明

    按:今天看Tanenbaum的计算机网络时讲到了Dijkstra算法.关于算法的正确性,<算法导论>给出了严格的证明.CLRS的证明基于一个通用的框架,非常清晰.今天只是随意想想是否有其他 ...

  8. [Bilingual] Different proofs of Jordan cardinal form (Jordan标准型的几种证明)

  9. 【数据结构与算法分析——C语言描述】第一章总结 引论

    这一章主要复习了一些数学知识,像指数.对数.模运算.级数公式:还有2种证明方法,归纳假设法和反证法.所幸以前学过,重新拾捡起来也比较轻松. 简要地复习了递归,提出了编写递归例程的四条基本法则: 基准情 ...

随机推荐

  1. Python | 内置函数(BIF)

    Python内置函数 | V3.9.1 | 共计155个 还没学完, 还没记录完, 不知道自己能不能坚持记录下去 1.ArithmeticError 2.AssertionError 3.Attrib ...

  2. 通过有序线性结构构造AVL树

    通过有序线性结构构造AVL树 本博客旨在结局利用有序数组和有序链表构造平衡二叉树(下文使用AVL树代指)问题. 直接通过旋转来构造AVL树似乎是一个不错的选择,但是稍加分析就会发现,这样平白无故做了许 ...

  3. 图文详解 HDFS 的工作机制及其原理

    大家好,我是大D. 今天开始给大家分享关于大数据入门技术栈--Hadoop的学习内容. 初识 Hadoop 为了解决大数据中海量数据的存储与计算问题,Hadoop 提供了一套分布式系统基础架构,核心内 ...

  4. 宽字符输出中文,Devc++解决方法

    有群友问类似问题,然后我编译了一下试试: #include <stdio.h> #include <wchar.h> #include <locale.h> int ...

  5. 九种常见UML图(分类+图解)

    九种常见UML图 1.类图 概述 类图(Class Diagram)是面向对象系统建模中最常用和最重要的图,是定义其它图的基础. 类图主要是用来显示系统中的类.接口以及它们之间的静态结构和关系的一种静 ...

  6. 283. Move Zeroes - LeetCode

    Question 283. Move Zeroes Solution 题目大意:将0移到最后 思路: 1. 数组复制 2. 不用数组复制 Java实现: 数组复制 public void moveZe ...

  7. 08shell脚本

    shell脚本编程 1.1简介 什么是shell脚本 shell脚本: 就是一些命令的集合, 在脚本文件中可以有流程控制, 如顺序, 条件分支和循环等 脚本文件一般一.sh文件为扩展名, 但是不是必须 ...

  8. dubbo是如何实现可扩展的?

    dubbo如何实现可扩展的,援引官网描述: Dubbo 的扩展点加载从 JDK 标准的 SPI (Service Provider Interface) 扩展点发现机制加强而来. Dubbo 改进了 ...

  9. TornadoFx设置保存功能((config和preference使用))

    原文地址:TornadoFx设置保存功能(config和preference使用) 相信大部分的桌面软件都是存在一个设置的界面,允许用户进行设置的修改,此修改之后需要保存的本地,若是让开发者自己实现, ...

  10. 对于vjudge在有些网络下无法打开的问题

    因为有些网络会屏蔽vjudge,所以打开 镜像网址 不行再试试这个:最新镜像网址