kube-scheduler的调度上下文
前一章节了解到了kube-scheduler中的概念,该章节则对调度上下文的源码进行分析
Scheduler
Scheduler 是整个 kube-scheduler
的一个 structure,提供了 kube-scheduler
运行所需的组件。
type Scheduler struct {
// Cache是一个抽象,会缓存pod的信息,作为scheduler进行查找,操作是基于Pod进行增加
Cache internalcache.Cache
// Extenders 算是调度框架中提供的调度插件,会影响kubernetes中的调度策略
Extenders []framework.Extender
// NextPod 作为一个函数提供,会阻塞获取下一个ke'diao'du
NextPod func() *framework.QueuedPodInfo
// Error is called if there is an error. It is passed the pod in
// question, and the error
Error func(*framework.QueuedPodInfo, error)
// SchedulePod 尝试将给出的pod调度到Node。
SchedulePod func(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (ScheduleResult, error)
// 关闭scheduler的信号
StopEverything <-chan struct{}
// SchedulingQueue保存要调度的Pod
SchedulingQueue internalqueue.SchedulingQueue
// Profiles中是多个调度框架
Profiles profile.Map
client clientset.Interface
nodeInfoSnapshot *internalcache.Snapshot
percentageOfNodesToScore int32
nextStartNodeIndex int
}
作为实际执行的两个核心,SchedulingQueue
,与 scheduleOne
将会分析到这两个
SchedulingQueue
在知道 kube-scheduler
初始化过程后,需要对 kube-scheduler
的整个 structure 和 workflow 进行分析
在 Run 中,运行的是 一个 SchedulingQueue
与 一个 scheduleOne
,从结构上看是属于 Scheduler
func (sched *Scheduler) Run(ctx context.Context) {
sched.SchedulingQueue.Run()
// We need to start scheduleOne loop in a dedicated goroutine,
// because scheduleOne function hangs on getting the next item
// from the SchedulingQueue.
// If there are no new pods to schedule, it will be hanging there
// and if done in this goroutine it will be blocking closing
// SchedulingQueue, in effect causing a deadlock on shutdown.
go wait.UntilWithContext(ctx, sched.scheduleOne, 0)
<-ctx.Done()
sched.SchedulingQueue.Close()
}
SchedulingQueue 是一个队列的抽象,用于存储等待调度的Pod。该接口遵循类似于 cache.FIFO 和 cache.Heap 的模式。
type SchedulingQueue interface {
framework.PodNominator
Add(pod *v1.Pod) error
// Activate moves the given pods to activeQ iff they're in unschedulablePods or backoffQ.
// The passed-in pods are originally compiled from plugins that want to activate Pods,
// by injecting the pods through a reserved CycleState struct (PodsToActivate).
Activate(pods map[string]*v1.Pod)
// 将不可调度的Pod重入到队列中
AddUnschedulableIfNotPresent(pod *framework.QueuedPodInfo, podSchedulingCycle int64) error
// SchedulingCycle returns the current number of scheduling cycle which is
// cached by scheduling queue. Normally, incrementing this number whenever
// a pod is popped (e.g. called Pop()) is enough.
SchedulingCycle() int64
// Pop会弹出一个pod,并从head优先级队列中删除
Pop() (*framework.QueuedPodInfo, error)
Update(oldPod, newPod *v1.Pod) error
Delete(pod *v1.Pod) error
MoveAllToActiveOrBackoffQueue(event framework.ClusterEvent, preCheck PreEnqueueCheck)
AssignedPodAdded(pod *v1.Pod)
AssignedPodUpdated(pod *v1.Pod)
PendingPods() []*v1.Pod
// Close closes the SchedulingQueue so that the goroutine which is
// waiting to pop items can exit gracefully.
Close()
// Run starts the goroutines managing the queue.
Run()
}
而 PriorityQueue 是 SchedulingQueue
的实现,该部分的核心构成是两个子队列与一个数据结构,即 activeQ
、backoffQ
和 unschedulablePods
activeQ
:是一个 heap 类型的优先级队列,是 sheduler 从中获得优先级最高的Pod进行调度backoffQ
:也是一个 heap 类型的优先级队列,存放的是不可调度的PodunschedulablePods
:保存确定不可被调度的Pod
type SchedulingQueue interface {
framework.PodNominator
Add(pod *v1.Pod) error
// Activate moves the given pods to activeQ iff they're in unschedulablePods or backoffQ.
// The passed-in pods are originally compiled from plugins that want to activate Pods,
// by injecting the pods through a reserved CycleState struct (PodsToActivate).
Activate(pods map[string]*v1.Pod)
// AddUnschedulableIfNotPresent adds an unschedulable pod back to scheduling queue.
// The podSchedulingCycle represents the current scheduling cycle number which can be
// returned by calling SchedulingCycle().
AddUnschedulableIfNotPresent(pod *framework.QueuedPodInfo, podSchedulingCycle int64) error
// SchedulingCycle returns the current number of scheduling cycle which is
// cached by scheduling queue. Normally, incrementing this number whenever
// a pod is popped (e.g. called Pop()) is enough.
SchedulingCycle() int64
// Pop removes the head of the queue and returns it. It blocks if the
// queue is empty and waits until a new item is added to the queue.
Pop() (*framework.QueuedPodInfo, error)
Update(oldPod, newPod *v1.Pod) error
Delete(pod *v1.Pod) error
MoveAllToActiveOrBackoffQueue(event framework.ClusterEvent, preCheck PreEnqueueCheck)
AssignedPodAdded(pod *v1.Pod)
AssignedPodUpdated(pod *v1.Pod)
PendingPods() []*v1.Pod
// Close closes the SchedulingQueue so that the goroutine which is
// waiting to pop items can exit gracefully.
Close()
// Run starts the goroutines managing the queue.
Run()
}
在New scheduler 时可以看到会初始化这个queue
podQueue := internalqueue.NewSchedulingQueue(
// 实现pod对比的一个函数即less
profiles[options.profiles[0].SchedulerName].QueueSortFunc(),
informerFactory,
internalqueue.WithPodInitialBackoffDuration(time.Duration(options.podInitialBackoffSeconds)*time.Second),
internalqueue.WithPodMaxBackoffDuration(time.Duration(options.podMaxBackoffSeconds)*time.Second),
internalqueue.WithPodNominator(nominator),
internalqueue.WithClusterEventMap(clusterEventMap),
internalqueue.WithPodMaxInUnschedulablePodsDuration(options.podMaxInUnschedulablePodsDuration),
)
而 NewSchedulingQueue 则是初始化这个 PriorityQueue
// NewSchedulingQueue initializes a priority queue as a new scheduling queue.
func NewSchedulingQueue(
lessFn framework.LessFunc,
informerFactory informers.SharedInformerFactory,
opts ...Option) SchedulingQueue {
return NewPriorityQueue(lessFn, informerFactory, opts...)
}
// NewPriorityQueue creates a PriorityQueue object.
func NewPriorityQueue(
lessFn framework.LessFunc,
informerFactory informers.SharedInformerFactory,
opts ...Option,
) *PriorityQueue {
options := defaultPriorityQueueOptions
for _, opt := range opts {
opt(&options)
}
// 这个就是 less函数,作为打分的一部分
comp := func(podInfo1, podInfo2 interface{}) bool {
pInfo1 := podInfo1.(*framework.QueuedPodInfo)
pInfo2 := podInfo2.(*framework.QueuedPodInfo)
return lessFn(pInfo1, pInfo2)
}
if options.podNominator == nil {
options.podNominator = NewPodNominator(informerFactory.Core().V1().Pods().Lister())
}
pq := &PriorityQueue{
PodNominator: options.podNominator,
clock: options.clock,
stop: make(chan struct{}),
podInitialBackoffDuration: options.podInitialBackoffDuration,
podMaxBackoffDuration: options.podMaxBackoffDuration,
podMaxInUnschedulablePodsDuration: options.podMaxInUnschedulablePodsDuration,
activeQ: heap.NewWithRecorder(podInfoKeyFunc, comp, metrics.NewActivePodsRecorder()),
unschedulablePods: newUnschedulablePods(metrics.NewUnschedulablePodsRecorder()),
moveRequestCycle: -1,
clusterEventMap: options.clusterEventMap,
}
pq.cond.L = &pq.lock
pq.podBackoffQ = heap.NewWithRecorder(podInfoKeyFunc, pq.podsCompareBackoffCompleted, metrics.NewBackoffPodsRecorder())
pq.nsLister = informerFactory.Core().V1().Namespaces().Lister()
return pq
}
了解了Queue的结构,就需要知道 入队列与出队列是在哪里操作的。在初始化时,需要注册一个 addEventHandlerFuncs
这个时候,会注入三个动作函数,也就是controller中的概念;而在AddFunc中可以看到会入队列。
注入是对 Pod 的informer注入的,注入的函数 addPodToSchedulingQueue 就是入栈
Handler: cache.ResourceEventHandlerFuncs{
AddFunc: sched.addPodToSchedulingQueue,
UpdateFunc: sched.updatePodInSchedulingQueue,
DeleteFunc: sched.deletePodFromSchedulingQueue,
},
func (sched *Scheduler) addPodToSchedulingQueue(obj interface{}) {
pod := obj.(*v1.Pod)
klog.V(3).InfoS("Add event for unscheduled pod", "pod", klog.KObj(pod))
if err := sched.SchedulingQueue.Add(pod); err != nil {
utilruntime.HandleError(fmt.Errorf("unable to queue %T: %v", obj, err))
}
}
而这个 SchedulingQueue
的实现就是 PriorityQueue
,而Add中则对 activeQ进行的操作
func (p *PriorityQueue) Add(pod *v1.Pod) error {
p.lock.Lock()
defer p.lock.Unlock()
// 格式化入栈数据,包含podinfo,里会包含v1.Pod
// 初始化的时间,创建的时间,以及不能被调度时的记录其plugin的名称
pInfo := p.newQueuedPodInfo(pod)
// 入栈
if err := p.activeQ.Add(pInfo); err != nil {
klog.ErrorS(err, "Error adding pod to the active queue", "pod", klog.KObj(pod))
return err
}
if p.unschedulablePods.get(pod) != nil {
klog.ErrorS(nil, "Error: pod is already in the unschedulable queue", "pod", klog.KObj(pod))
p.unschedulablePods.delete(pod)
}
// Delete pod from backoffQ if it is backing off
if err := p.podBackoffQ.Delete(pInfo); err == nil {
klog.ErrorS(nil, "Error: pod is already in the podBackoff queue", "pod", klog.KObj(pod))
}
metrics.SchedulerQueueIncomingPods.WithLabelValues("active", PodAdd).Inc()
p.PodNominator.AddNominatedPod(pInfo.PodInfo, nil)
p.cond.Broadcast()
return nil
}
在上面看 scheduler 结构时,可以看到有一个 nextPod的,nextPod就是从队列中弹出一个pod,这个在scheduler 时会传入 MakeNextPodFunc 就是这个 nextpod
func MakeNextPodFunc(queue SchedulingQueue) func() *framework.QueuedPodInfo {
return func() *framework.QueuedPodInfo {
podInfo, err := queue.Pop()
if err == nil {
klog.V(4).InfoS("About to try and schedule pod", "pod", klog.KObj(podInfo.Pod))
for plugin := range podInfo.UnschedulablePlugins {
metrics.UnschedulableReason(plugin, podInfo.Pod.Spec.SchedulerName).Dec()
}
return podInfo
}
klog.ErrorS(err, "Error while retrieving next pod from scheduling queue")
return nil
}
}
而这个 queue.Pop()
对应的就是 PriorityQueue
的 Pop() ,在这里会将作为 activeQ 的消费端
func (p *PriorityQueue) Pop() (*framework.QueuedPodInfo, error) {
p.lock.Lock()
defer p.lock.Unlock()
for p.activeQ.Len() == 0 {
// When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
// When Close() is called, the p.closed is set and the condition is broadcast,
// which causes this loop to continue and return from the Pop().
if p.closed {
return nil, fmt.Errorf(queueClosed)
}
p.cond.Wait()
}
obj, err := p.activeQ.Pop()
if err != nil {
return nil, err
}
pInfo := obj.(*framework.QueuedPodInfo)
pInfo.Attempts++
p.schedulingCycle++
return pInfo, nil
}
在上面入口部分也看到了,scheduleOne 和 scheduler,scheduleOne 就是去消费一个Pod,他会调用 NextPod,NextPod就是在初始化传入的 MakeNextPodFunc
,至此回到对应的 Pop来做消费。
schedulerOne是为一个Pod做调度的流程。
func (sched *Scheduler) scheduleOne(ctx context.Context) {
podInfo := sched.NextPod()
// pod could be nil when schedulerQueue is closed
if podInfo == nil || podInfo.Pod == nil {
return
}
pod := podInfo.Pod
fwk, err := sched.frameworkForPod(pod)
if err != nil {
// This shouldn't happen, because we only accept for scheduling the pods
// which specify a scheduler name that matches one of the profiles.
klog.ErrorS(err, "Error occurred")
return
}
if sched.skipPodSchedule(fwk, pod) {
return
}
...
调度上下文
当了解了scheduler结构后,下面分析下调度上下文的过程。看看扩展点是怎么工作的。这个时候又需要提到官网的调度上下文的图。
图1:Pod的调度上下文
Source:https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework
而 scheduler 对于调度上下文来就是这个 scheduleOne
,下面就是看这个调度上下文
Sort
Sort
插件提供了排序功能,用于对在调度队列中待处理 Pod 进行排序。一次只能启用一个队列排序。
在进入 scheduleOne
后,NextPod
从 activeQ
中队列中得到一个Pod,然后的 frameworkForPod
会做打分的动作就是调度上下文的第一个扩展点 sort
func (sched *Scheduler) scheduleOne(ctx context.Context) {
podInfo := sched.NextPod()
// pod could be nil when schedulerQueue is closed
if podInfo == nil || podInfo.Pod == nil {
return
}
pod := podInfo.Pod
fwk, err := sched.frameworkForPod(pod)
...
func (sched *Scheduler) frameworkForPod(pod *v1.Pod) (framework.Framework, error) {
// 获取指定的profile
fwk, ok := sched.Profiles[pod.Spec.SchedulerName]
if !ok {
return nil, fmt.Errorf("profile not found for scheduler name %q", pod.Spec.SchedulerName)
}
return fwk, nil
}
回顾,因为在New scheduler时会初始化这个 sort 函数
podQueue := internalqueue.NewSchedulingQueue(
profiles[options.profiles[0].SchedulerName].QueueSortFunc(),
informerFactory,
internalqueue.WithPodInitialBackoffDuration(time.Duration(options.podInitialBackoffSeconds)*time.Second),
internalqueue.WithPodMaxBackoffDuration(time.Duration(options.podMaxBackoffSeconds)*time.Second),
internalqueue.WithPodNominator(nominator),
internalqueue.WithClusterEventMap(clusterEventMap),
internalqueue.WithPodMaxInUnschedulablePodsDuration(options.podMaxInUnschedulablePodsDuration),
)
preFilter
preFilter作为第一个扩展点,是用于在过滤之前预处理或检查 Pod 或集群的相关信息。这里会终止调度
func (sched *Scheduler) scheduleOne(ctx context.Context) {
podInfo := sched.NextPod()
// pod could be nil when schedulerQueue is closed
if podInfo == nil || podInfo.Pod == nil {
return
}
pod := podInfo.Pod
fwk, err := sched.frameworkForPod(pod)
if err != nil {
// This shouldn't happen, because we only accept for scheduling the pods
// which specify a scheduler name that matches one of the profiles.
klog.ErrorS(err, "Error occurred")
return
}
if sched.skipPodSchedule(fwk, pod) {
return
}
klog.V(3).InfoS("Attempting to schedule pod", "pod", klog.KObj(pod))
// Synchronously attempt to find a fit for the pod.
start := time.Now()
state := framework.NewCycleState()
state.SetRecordPluginMetrics(rand.Intn(100) < pluginMetricsSamplePercent)
// Initialize an empty podsToActivate struct, which will be filled up by plugins or stay empty.
podsToActivate := framework.NewPodsToActivate()
state.Write(framework.PodsToActivateKey, podsToActivate)
schedulingCycleCtx, cancel := context.WithCancel(ctx)
defer cancel()
// 这里将进入prefilter
scheduleResult, err := sched.SchedulePod(schedulingCycleCtx, fwk, state, pod)
schedulePod 尝试将给定的 pod 调度到节点列表中的节点之一。如果成功,它将返回节点的名称。
func (sched *Scheduler) schedulePod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (result ScheduleResult, err error) {
trace := utiltrace.New("Scheduling", utiltrace.Field{Key: "namespace", Value: pod.Namespace}, utiltrace.Field{Key: "name", Value: pod.Name})
defer trace.LogIfLong(100 * time.Millisecond)
// 用于将cache更新为当前内容
if err := sched.Cache.UpdateSnapshot(sched.nodeInfoSnapshot); err != nil {
return result, err
}
trace.Step("Snapshotting scheduler cache and node infos done")
if sched.nodeInfoSnapshot.NumNodes() == 0 {
return result, ErrNoNodesAvailable
}
// 找到一个合适的pod时,会执行扩展点
feasibleNodes, diagnosis, err := sched.findNodesThatFitPod(ctx, fwk, state, pod)
...
findNodesThatFitPod 会执行对应的过滤插件来找到最适合的Node,包括备注,以及方法名都可以看到,这里运行的插件,后面会分析算法内容,只对workflow学习。
func (sched *Scheduler) findNodesThatFitPod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) ([]*v1.Node, framework.Diagnosis, error) {
diagnosis := framework.Diagnosis{
NodeToStatusMap: make(framework.NodeToStatusMap),
UnschedulablePlugins: sets.NewString(),
}
// Run "prefilter" plugins.
preRes, s := fwk.RunPreFilterPlugins(ctx, state, pod)
allNodes, err := sched.nodeInfoSnapshot.NodeInfos().List()
if err != nil {
return nil, diagnosis, err
}
if !s.IsSuccess() {
if !s.IsUnschedulable() {
return nil, diagnosis, s.AsError()
}
// All nodes will have the same status. Some non trivial refactoring is
// needed to avoid this copy.
for _, n := range allNodes {
diagnosis.NodeToStatusMap[n.Node().Name] = s
}
// Status satisfying IsUnschedulable() gets injected into diagnosis.UnschedulablePlugins.
if s.FailedPlugin() != "" {
diagnosis.UnschedulablePlugins.Insert(s.FailedPlugin())
}
return nil, diagnosis, nil
}
// "NominatedNodeName" can potentially be set in a previous scheduling cycle as a result of preemption.
// This node is likely the only candidate that will fit the pod, and hence we try it first before iterating over all nodes.
if len(pod.Status.NominatedNodeName) > 0 {
feasibleNodes, err := sched.evaluateNominatedNode(ctx, pod, fwk, state, diagnosis)
if err != nil {
klog.ErrorS(err, "Evaluation failed on nominated node", "pod", klog.KObj(pod), "node", pod.Status.NominatedNodeName)
}
// Nominated node passes all the filters, scheduler is good to assign this node to the pod.
if len(feasibleNodes) != 0 {
return feasibleNodes, diagnosis, nil
}
}
nodes := allNodes
if !preRes.AllNodes() {
nodes = make([]*framework.NodeInfo, 0, len(preRes.NodeNames))
for n := range preRes.NodeNames {
nInfo, err := sched.nodeInfoSnapshot.NodeInfos().Get(n)
if err != nil {
return nil, diagnosis, err
}
nodes = append(nodes, nInfo)
}
}
feasibleNodes, err := sched.findNodesThatPassFilters(ctx, fwk, state, pod, diagnosis, nodes)
if err != nil {
return nil, diagnosis, err
}
feasibleNodes, err = findNodesThatPassExtenders(sched.Extenders, pod, feasibleNodes, diagnosis.NodeToStatusMap)
if err != nil {
return nil, diagnosis, err
}
return feasibleNodes, diagnosis, nil
}
filter
filter插件相当于调度上下文中的 Predicates
,用于排除不能运行 Pod 的节点。Filter 会按配置的顺序进行调用。如果有一个filter将节点标记位不可用,则将 Pod 标记为不可调度(即不会向下执行)。
对于代码中来讲,filter还是处于 findNodesThatFitPod 函数中,findNodesThatPassFilters
就是获取到 FN,即可行节点,而这个过程就是 filter 扩展点
func (sched *Scheduler) findNodesThatFitPod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) ([]*v1.Node, framework.Diagnosis, error) {
...
feasibleNodes, err := sched.findNodesThatPassFilters(ctx, fwk, state, pod, diagnosis, nodes)
if err != nil {
return nil, diagnosis, err
}
feasibleNodes, err = findNodesThatPassExtenders(sched.Extenders, pod, feasibleNodes, diagnosis.NodeToStatusMap)
if err != nil {
return nil, diagnosis, err
}
return feasibleNodes, diagnosis, nil
}
Postfilter
当没有为 pod 找到FN时,该插件会按照配置的顺序进行调用。如果任何postFilter
插件将 Pod 标记为schedulable,则不会调用其余插件。即 filter
成功后不会进行这步骤,那我们来验证下这里把
还是在 scheduleOne 中,当我们运行的 SchedulePod 完成后(成功或失败),这时会返回一个err,而 postfilter
会根据这个 err进行选择执行或不执行,符合官方给出的说法。
scheduleResult, err := sched.SchedulePod(schedulingCycleCtx, fwk, state, pod)
if err != nil {
// SchedulePod() may have failed because the pod would not fit on any host, so we try to
// preempt, with the expectation that the next time the pod is tried for scheduling it
// will fit due to the preemption. It is also possible that a different pod will schedule
// into the resources that were preempted, but this is harmless.
var nominatingInfo *framework.NominatingInfo
if fitError, ok := err.(*framework.FitError); ok {
if !fwk.HasPostFilterPlugins() {
klog.V(3).InfoS("No PostFilter plugins are registered, so no preemption will be performed")
} else {
// Run PostFilter plugins to try to make the pod schedulable in a future scheduling cycle.
result, status := fwk.RunPostFilterPlugins(ctx, state, pod, fitError.Diagnosis.NodeToStatusMap)
if status.Code() == framework.Error {
klog.ErrorS(nil, "Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
} else {
fitError.Diagnosis.PostFilterMsg = status.Message()
klog.V(5).InfoS("Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
}
if result != nil {
nominatingInfo = result.NominatingInfo
}
}
// Pod did not fit anywhere, so it is counted as a failure. If preemption
// succeeds, the pod should get counted as a success the next time we try to
// schedule it. (hopefully)
metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
} else if err == ErrNoNodesAvailable {
nominatingInfo = clearNominatedNode
// No nodes available is counted as unschedulable rather than an error.
metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
} else {
nominatingInfo = clearNominatedNode
klog.ErrorS(err, "Error selecting node for pod", "pod", klog.KObj(pod))
metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
}
sched.handleSchedulingFailure(ctx, fwk, podInfo, err, v1.PodReasonUnschedulable, nominatingInfo)
return
}
PreScore,Score
可用于进行预Score工作,作为通知性的扩展点,会在在filter完之后直接会关联 preScore 插件进行继续工作,而不是返回,如果配置的这些插件有任何一个返回失败,则Pod将被拒绝。
func (sched *Scheduler) schedulePod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (result ScheduleResult, err error) {
trace := utiltrace.New("Scheduling", utiltrace.Field{Key: "namespace", Value: pod.Namespace}, utiltrace.Field{Key: "name", Value: pod.Name})
defer trace.LogIfLong(100 * time.Millisecond)
if err := sched.Cache.UpdateSnapshot(sched.nodeInfoSnapshot); err != nil {
return result, err
}
trace.Step("Snapshotting scheduler cache and node infos done")
if sched.nodeInfoSnapshot.NumNodes() == 0 {
return result, ErrNoNodesAvailable
}
feasibleNodes, diagnosis, err := sched.findNodesThatFitPod(ctx, fwk, state, pod)
if err != nil {
return result, err
}
trace.Step("Computing predicates done")
if len(feasibleNodes) == 0 {
return result, &framework.FitError{
Pod: pod,
NumAllNodes: sched.nodeInfoSnapshot.NumNodes(),
Diagnosis: diagnosis,
}
}
// When only one node after predicate, just use it.
if len(feasibleNodes) == 1 {
return ScheduleResult{
SuggestedHost: feasibleNodes[0].Name,
EvaluatedNodes: 1 + len(diagnosis.NodeToStatusMap),
FeasibleNodes: 1,
}, nil
}
// 这里会完成prescore,score
priorityList, err := prioritizeNodes(ctx, sched.Extenders, fwk, state, pod, feasibleNodes)
if err != nil {
return result, err
}
host, err := selectHost(priorityList)
trace.Step("Prioritizing done")
return ScheduleResult{
SuggestedHost: host,
EvaluatedNodes: len(feasibleNodes) + len(diagnosis.NodeToStatusMap),
FeasibleNodes: len(feasibleNodes),
}, err
}
priorityNodes 会通过配置的插件给Node打分,并返回每个Node的分数,将每个插件打分结果计算总和获得Node的分数,最后获得节点的加权总分数。
func prioritizeNodes(
ctx context.Context,
extenders []framework.Extender,
fwk framework.Framework,
state *framework.CycleState,
pod *v1.Pod,
nodes []*v1.Node,
) (framework.NodeScoreList, error) {
// If no priority configs are provided, then all nodes will have a score of one.
// This is required to generate the priority list in the required format
if len(extenders) == 0 && !fwk.HasScorePlugins() {
result := make(framework.NodeScoreList, 0, len(nodes))
for i := range nodes {
result = append(result, framework.NodeScore{
Name: nodes[i].Name,
Score: 1,
})
}
return result, nil
}
// Run PreScore plugins.
preScoreStatus := fwk.RunPreScorePlugins(ctx, state, pod, nodes)
if !preScoreStatus.IsSuccess() {
return nil, preScoreStatus.AsError()
}
// Run the Score plugins.
scoresMap, scoreStatus := fwk.RunScorePlugins(ctx, state, pod, nodes)
if !scoreStatus.IsSuccess() {
return nil, scoreStatus.AsError()
}
// Additional details logged at level 10 if enabled.
klogV := klog.V(10)
if klogV.Enabled() {
for plugin, nodeScoreList := range scoresMap {
for _, nodeScore := range nodeScoreList {
klogV.InfoS("Plugin scored node for pod", "pod", klog.KObj(pod), "plugin", plugin, "node", nodeScore.Name, "score", nodeScore.Score)
}
}
}
// Summarize all scores.
result := make(framework.NodeScoreList, 0, len(nodes))
for i := range nodes {
result = append(result, framework.NodeScore{Name: nodes[i].Name, Score: 0})
for j := range scoresMap {
result[i].Score += scoresMap[j][i].Score
}
}
if len(extenders) != 0 && nodes != nil {
var mu sync.Mutex
var wg sync.WaitGroup
combinedScores := make(map[string]int64, len(nodes))
for i := range extenders {
if !extenders[i].IsInterested(pod) {
continue
}
wg.Add(1)
go func(extIndex int) {
metrics.SchedulerGoroutines.WithLabelValues(metrics.PrioritizingExtender).Inc()
defer func() {
metrics.SchedulerGoroutines.WithLabelValues(metrics.PrioritizingExtender).Dec()
wg.Done()
}()
prioritizedList, weight, err := extenders[extIndex].Prioritize(pod, nodes)
if err != nil {
// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
klog.V(5).InfoS("Failed to run extender's priority function. No score given by this extender.", "error", err, "pod", klog.KObj(pod), "extender", extenders[extIndex].Name())
return
}
mu.Lock()
for i := range *prioritizedList {
host, score := (*prioritizedList)[i].Host, (*prioritizedList)[i].Score
if klogV.Enabled() {
klogV.InfoS("Extender scored node for pod", "pod", klog.KObj(pod), "extender", extenders[extIndex].Name(), "node", host, "score", score)
}
combinedScores[host] += score * weight
}
mu.Unlock()
}(i)
}
// wait for all go routines to finish
wg.Wait()
for i := range result {
// MaxExtenderPriority may diverge from the max priority used in the scheduler and defined by MaxNodeScore,
// therefore we need to scale the score returned by extenders to the score range used by the scheduler.
result[i].Score += combinedScores[result[i].Name] * (framework.MaxNodeScore / extenderv1.MaxExtenderPriority)
}
}
if klogV.Enabled() {
for i := range result {
klogV.InfoS("Calculated node's final score for pod", "pod", klog.KObj(pod), "node", result[i].Name, "score", result[i].Score)
}
}
return result, nil
}
Reserve
Reserve 因为绑定事件时异步发生的,该插件是为了避免Pod在绑定到节点前时,调度到新的Pod,使节点使用资源超过可用资源情况。如果后续阶段发生错误或失败,将触发 UnReserve
回滚(通知性扩展点)。这也是作为调度周期中最后一个状态,要么成功到 postBind
,要么失败触发 UnReserve
。
// Run the Reserve method of reserve plugins.
if sts := fwk.RunReservePluginsReserve(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost); !sts.IsSuccess() { // 当处理不成功时
metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
// 触发 un-reserve 来清理相关Pod的状态
fwk.RunReservePluginsUnreserve(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
klog.ErrorS(forgetErr, "Scheduler cache ForgetPod failed")
}
sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, sts.AsError(), SchedulerError, clearNominatedNode)
return
}
permit
Permit 插件可以阻止或延迟 Pod 的绑定
// Run "permit" plugins.
runPermitStatus := fwk.RunPermitPlugins(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
if !runPermitStatus.IsWait() && !runPermitStatus.IsSuccess() {
var reason string
if runPermitStatus.IsUnschedulable() {
metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
reason = v1.PodReasonUnschedulable
} else {
metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
reason = SchedulerError
}
// 只要其中一个插件返回的状态不是 success 或者 wait
fwk.RunReservePluginsUnreserve(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
// 从cache中忘掉pod
if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
klog.ErrorS(forgetErr, "Scheduler cache ForgetPod failed")
}
sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, runPermitStatus.AsError(), reason, clearNominatedNode)
return
}
Binding Cycle
在选择好 FN 后则做一个假设绑定,并更新到cache中,接下来回去执行真正的bind操作,也就是 binding cycle
func (sched *Scheduler) scheduleOne(ctx context.Context) {
...
...
// binding cycle 是一个异步的操作,这里表现就是go协程
go func() {
bindingCycleCtx, cancel := context.WithCancel(ctx)
defer cancel()
metrics.SchedulerGoroutines.WithLabelValues(metrics.Binding).Inc()
defer metrics.SchedulerGoroutines.WithLabelValues(metrics.Binding).Dec()
// 运行WaitOnPermit插件,如果失败则,unReserve回滚
waitOnPermitStatus := fwk.WaitOnPermit(bindingCycleCtx, assumedPod)
if !waitOnPermitStatus.IsSuccess() {
var reason string
if waitOnPermitStatus.IsUnschedulable() {
metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
reason = v1.PodReasonUnschedulable
} else {
metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
reason = SchedulerError
}
// trigger un-reserve plugins to clean up state associated with the reserved Pod
fwk.RunReservePluginsUnreserve(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
klog.ErrorS(forgetErr, "scheduler cache ForgetPod failed")
} else {
// "Forget"ing an assumed Pod in binding cycle should be treated as a PodDelete event,
// as the assumed Pod had occupied a certain amount of resources in scheduler cache.
// TODO(#103853): de-duplicate the logic.
// Avoid moving the assumed Pod itself as it's always Unschedulable.
// It's intentional to "defer" this operation; otherwise MoveAllToActiveOrBackoffQueue() would
// update `q.moveRequest` and thus move the assumed pod to backoffQ anyways.
defer sched.SchedulingQueue.MoveAllToActiveOrBackoffQueue(internalqueue.AssignedPodDelete, func(pod *v1.Pod) bool {
return assumedPod.UID != pod.UID
})
}
sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, waitOnPermitStatus.AsError(), reason, clearNominatedNode)
return
}
// 运行Prebind 插件
preBindStatus := fwk.RunPreBindPlugins(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
if !preBindStatus.IsSuccess() {
metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
// trigger un-reserve plugins to clean up state associated with the reserved Pod
fwk.RunReservePluginsUnreserve(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
klog.ErrorS(forgetErr, "scheduler cache ForgetPod failed")
} else {
// "Forget"ing an assumed Pod in binding cycle should be treated as a PodDelete event,
// as the assumed Pod had occupied a certain amount of resources in scheduler cache.
// TODO(#103853): de-duplicate the logic.
sched.SchedulingQueue.MoveAllToActiveOrBackoffQueue(internalqueue.AssignedPodDelete, nil)
}
sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, preBindStatus.AsError(), SchedulerError, clearNominatedNode)
return
}
// bind是真正的绑定操作
err := sched.bind(bindingCycleCtx, fwk, assumedPod, scheduleResult.SuggestedHost, state)
if err != nil {
metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
// 如果失败了就触发 un-reserve plugins
fwk.RunReservePluginsUnreserve(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
if err := sched.Cache.ForgetPod(assumedPod); err != nil {
klog.ErrorS(err, "scheduler cache ForgetPod failed")
} else {
// "Forget"ing an assumed Pod in binding cycle should be treated as a PodDelete event,
// as the assumed Pod had occupied a certain amount of resources in scheduler cache.
// TODO(#103853): de-duplicate the logic.
sched.SchedulingQueue.MoveAllToActiveOrBackoffQueue(internalqueue.AssignedPodDelete, nil)
}
sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, fmt.Errorf("binding rejected: %w", err), SchedulerError, clearNominatedNode)
return
}
// Calculating nodeResourceString can be heavy. Avoid it if klog verbosity is below 2.
klog.V(2).InfoS("Successfully bound pod to node", "pod", klog.KObj(pod), "node", scheduleResult.SuggestedHost, "evaluatedNodes", scheduleResult.EvaluatedNodes, "feasibleNodes", scheduleResult.FeasibleNodes)
metrics.PodScheduled(fwk.ProfileName(), metrics.SinceInSeconds(start))
metrics.PodSchedulingAttempts.Observe(float64(podInfo.Attempts))
metrics.PodSchedulingDuration.WithLabelValues(getAttemptsLabel(podInfo)).Observe(metrics.SinceInSeconds(podInfo.InitialAttemptTimestamp))
// 运行 "postbind" 插件
// 是通知性的扩展点,该插件在绑定 Pod 后调用,可用于清理相关资源()。
fwk.RunPostBindPlugins(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
// At the end of a successful binding cycle, move up Pods if needed.
if len(podsToActivate.Map) != 0 {
sched.SchedulingQueue.Activate(podsToActivate.Map)
// Unlike the logic in scheduling cycle, we don't bother deleting the entries
// as `podsToActivate.Map` is no longer consumed.
}
}()
}
调度上下文中的失败流程
上面说到的都是正常的请求,下面会对失败的请求是如何重试的进行分析,而 scheduler 中关于失败处理方面相关的属性会涉及到上面 scheduler 结构中的 backoffQ
与 unschedulablePods
backoffQ
:也是一个 heap 类型的优先级队列,存放的是不可调度的PodunschedulablePods
:保存确定不可被调度的Pod,一个map类型
backoffQ 与 unschedulablePods 会在初始化 scheduler 时初始化,
func NewPriorityQueue(
lessFn framework.LessFunc,
informerFactory informers.SharedInformerFactory,
opts ...Option,
) *PriorityQueue {
options := defaultPriorityQueueOptions
for _, opt := range opts {
opt(&options)
}
comp := func(podInfo1, podInfo2 interface{}) bool {
pInfo1 := podInfo1.(*framework.QueuedPodInfo)
pInfo2 := podInfo2.(*framework.QueuedPodInfo)
return lessFn(pInfo1, pInfo2)
}
if options.podNominator == nil {
options.podNominator = NewPodNominator(informerFactory.Core().V1().Pods().Lister())
}
pq := &PriorityQueue{
PodNominator: options.podNominator,
clock: options.clock,
stop: make(chan struct{}),
podInitialBackoffDuration: options.podInitialBackoffDuration,
podMaxBackoffDuration: options.podMaxBackoffDuration,
podMaxInUnschedulablePodsDuration: options.podMaxInUnschedulablePodsDuration,
activeQ: heap.NewWithRecorder(podInfoKeyFunc, comp, metrics.NewActivePodsRecorder()),
unschedulablePods: newUnschedulablePods(metrics.NewUnschedulablePodsRecorder()),
moveRequestCycle: -1,
clusterEventMap: options.clusterEventMap,
}
pq.cond.L = &pq.lock
// 初始化backoffQ
// NewWithRecorder作为一个可选的 metricRecorder 的 Heap 对象。
// podInfoKeyFunc是一个函数,返回错误与字符串
// pq.podsCompareBackoffCompleted 比较两个pod的回退时间,如果第一个在第二个之前为true,
// 反之 false
pq.podBackoffQ = heap.NewWithRecorder(podInfoKeyFunc, pq.podsCompareBackoffCompleted, metrics.NewBackoffPodsRecorder())
pq.nsLister = informerFactory.Core().V1().Namespaces().Lister()
return pq
}
对于初始化 backoffQ 会产生的两个函数,getBackoffTime 与 calculateBackoffDuration
// getBackoffTime returns the time that podInfo completes backoff
func (p *PriorityQueue) getBackoffTime(podInfo *framework.QueuedPodInfo) time.Time {
duration := p.calculateBackoffDuration(podInfo)
backoffTime := podInfo.Timestamp.Add(duration)
return backoffTime
}
// calculateBackoffDuration is a helper function for calculating the backoffDuration
// based on the number of attempts the pod has made.
func (p *PriorityQueue) calculateBackoffDuration(podInfo *framework.QueuedPodInfo) time.Duration {
duration := p.podInitialBackoffDuration
for i := 1; i < podInfo.Attempts; i++ {
// Use subtraction instead of addition or multiplication to avoid overflow.
if duration > p.podMaxBackoffDuration-duration {
return p.podMaxBackoffDuration
}
duration += duration
}
return duration
}
对于整个故障错误会按照如下流程进行,在初始化 scheduler 会注册一个 Error 函数,这个函数用作对不可调度Pod进行处理,实际上被注册的函数是 MakeDefaultErrorFunc。这个函数将作为 Error 函数被调用。
sched := newScheduler(
schedulerCache,
extenders,
internalqueue.MakeNextPodFunc(podQueue),
MakeDefaultErrorFunc(client, podLister, podQueue, schedulerCache),
stopEverything,
podQueue,
profiles,
client,
snapshot,
options.percentageOfNodesToScore,
)
而在 调度周期中,也就是 scheduleOne 可以看到,每个扩展点操作失败后都会调用 handleSchedulingFailure 而该函数,使用了注册的 Error 函数来处理Pod
func (sched *Scheduler) scheduleOne(ctx context.Context) {
...
defer cancel()
scheduleResult, err := sched.SchedulePod(schedulingCycleCtx, fwk, state, pod)
if err != nil {
var nominatingInfo *framework.NominatingInfo
if fitError, ok := err.(*framework.FitError); ok {
if !fwk.HasPostFilterPlugins() {
klog.V(3).InfoS("No PostFilter plugins are registered, so no preemption will be performed")
} else {
result, status := fwk.RunPostFilterPlugins(ctx, state, pod, fitError.Diagnosis.NodeToStatusMap)
if status.Code() == framework.Error {
klog.ErrorS(nil, "Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
} else {
fitError.Diagnosis.PostFilterMsg = status.Message()
klog.V(5).InfoS("Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
}
if result != nil {
nominatingInfo = result.NominatingInfo
}
}
metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
} else if err == ErrNoNodesAvailable {
nominatingInfo = clearNominatedNode
// No nodes available is counted as unschedulable rather than an error.
metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
} else {
nominatingInfo = clearNominatedNode
klog.ErrorS(err, "Error selecting node for pod", "pod", klog.KObj(pod))
metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
}
// 处理不可调度Pod
sched.handleSchedulingFailure(ctx, fwk, podInfo, err, v1.PodReasonUnschedulable, nominatingInfo)
return
}
来到了注册的 Error 函数 MakeDefaultErrorFunc
func MakeDefaultErrorFunc(client clientset.Interface, podLister corelisters.PodLister, podQueue internalqueue.SchedulingQueue, schedulerCache internalcache.Cache) func(*framework.QueuedPodInfo, error) {
return func(podInfo *framework.QueuedPodInfo, err error) {
pod := podInfo.Pod
if err == ErrNoNodesAvailable {
klog.V(2).InfoS("Unable to schedule pod; no nodes are registered to the cluster; waiting", "pod", klog.KObj(pod))
} else if fitError, ok := err.(*framework.FitError); ok {
// Inject UnschedulablePlugins to PodInfo, which will be used later for moving Pods between queues efficiently.
podInfo.UnschedulablePlugins = fitError.Diagnosis.UnschedulablePlugins
klog.V(2).InfoS("Unable to schedule pod; no fit; waiting", "pod", klog.KObj(pod), "err", err)
} else if apierrors.IsNotFound(err) {
klog.V(2).InfoS("Unable to schedule pod, possibly due to node not found; waiting", "pod", klog.KObj(pod), "err", err)
if errStatus, ok := err.(apierrors.APIStatus); ok && errStatus.Status().Details.Kind == "node" {
nodeName := errStatus.Status().Details.Name
// when node is not found, We do not remove the node right away. Trying again to get
// the node and if the node is still not found, then remove it from the scheduler cache.
_, err := client.CoreV1().Nodes().Get(context.TODO(), nodeName, metav1.GetOptions{})
if err != nil && apierrors.IsNotFound(err) {
node := v1.Node{ObjectMeta: metav1.ObjectMeta{Name: nodeName}}
if err := schedulerCache.RemoveNode(&node); err != nil {
klog.V(4).InfoS("Node is not found; failed to remove it from the cache", "node", node.Name)
}
}
}
} else {
klog.ErrorS(err, "Error scheduling pod; retrying", "pod", klog.KObj(pod))
}
// Check if the Pod exists in informer cache.
cachedPod, err := podLister.Pods(pod.Namespace).Get(pod.Name)
if err != nil {
klog.InfoS("Pod doesn't exist in informer cache", "pod", klog.KObj(pod), "err", err)
return
}
// In the case of extender, the pod may have been bound successfully, but timed out returning its response to the scheduler.
// It could result in the live version to carry .spec.nodeName, and that's inconsistent with the internal-queued version.
if len(cachedPod.Spec.NodeName) != 0 {
klog.InfoS("Pod has been assigned to node. Abort adding it back to queue.", "pod", klog.KObj(pod), "node", cachedPod.Spec.NodeName)
return
}
// As <cachedPod> is from SharedInformer, we need to do a DeepCopy() here.
podInfo.PodInfo = framework.NewPodInfo(cachedPod.DeepCopy())
// 添加到unschedulable队列中
if err := podQueue.AddUnschedulableIfNotPresent(podInfo, podQueue.SchedulingCycle()); err != nil {
klog.ErrorS(err, "Error occurred")
}
}
}
下面来到 AddUnschedulableIfNotPresent
,这个也是操作 backoffQ
和 unschedulablePods
的真正的动作
AddUnschedulableIfNotPresent
函数会吧无法调度的 pod 插入队列,除非它已经在队列中。通常情况下,PriorityQueue
将不可调度的 Pod 放在 unschedulablePods
中。但如果最近有 move request,则将 pod 放入 podBackoffQ
中。
func (p *PriorityQueue) AddUnschedulableIfNotPresent(pInfo *framework.QueuedPodInfo, podSchedulingCycle int64) error {
p.lock.Lock()
defer p.lock.Unlock()
pod := pInfo.Pod
// 如果已经存在则不添加
if p.unschedulablePods.get(pod) != nil {
return fmt.Errorf("Pod %v is already present in unschedulable queue", klog.KObj(pod))
}
// 检查是否在activeQ中
if _, exists, _ := p.activeQ.Get(pInfo); exists {
return fmt.Errorf("Pod %v is already present in the active queue", klog.KObj(pod))
}
// 检查是否在podBackoffQ中
if _, exists, _ := p.podBackoffQ.Get(pInfo); exists {
return fmt.Errorf("Pod %v is already present in the backoff queue", klog.KObj(pod))
}
// 在重新添加时,会刷新 Pod时间为最新操作的时间
pInfo.Timestamp = p.clock.Now()
for plugin := range pInfo.UnschedulablePlugins {
metrics.UnschedulableReason(plugin, pInfo.Pod.Spec.SchedulerName).Inc()
}
// 如果接受到move request那么则放入BackoffQ
if p.moveRequestCycle >= podSchedulingCycle {
if err := p.podBackoffQ.Add(pInfo); err != nil {
return fmt.Errorf("error adding pod %v to the backoff queue: %v", pod.Name, err)
}
metrics.SchedulerQueueIncomingPods.WithLabelValues("backoff", ScheduleAttemptFailure).Inc()
} else {
// 否则将放入到 unschedulablePods
p.unschedulablePods.addOrUpdate(pInfo)
metrics.SchedulerQueueIncomingPods.WithLabelValues("unschedulable", ScheduleAttemptFailure).Inc()
}
p.PodNominator.AddNominatedPod(pInfo.PodInfo, nil)
return nil
}
在启动 scheduler 时,会将这两个队列异步启用两个loop来操作队列。表现在 Run()
func (p *PriorityQueue) Run() {
go wait.Until(p.flushBackoffQCompleted, 1.0*time.Second, p.stop)
go wait.Until(p.flushUnschedulablePodsLeftover, 30*time.Second, p.stop)
}
可以看到 flushBackoffQCompleted 作为 BackoffQ
实现;而 flushUnschedulablePodsLeftover 作为 UnschedulablePods
实现。
flushBackoffQCompleted
是用于将所有已完成回退的 pod 从 backoffQ
移到 activeQ
中
func (p *PriorityQueue) flushBackoffQCompleted() {
p.lock.Lock()
defer p.lock.Unlock()
broadcast := false
for { // 这就是heap实现的方法,窥视下,但不弹出
rawPodInfo := p.podBackoffQ.Peek()
if rawPodInfo == nil {
break
}
pod := rawPodInfo.(*framework.QueuedPodInfo).Pod
boTime := p.getBackoffTime(rawPodInfo.(*framework.QueuedPodInfo))
if boTime.After(p.clock.Now()) {
break
}
_, err := p.podBackoffQ.Pop() // 弹出一个
if err != nil {
klog.ErrorS(err, "Unable to pop pod from backoff queue despite backoff completion", "pod", klog.KObj(pod))
break
}
p.activeQ.Add(rawPodInfo) // 放入到活动队列中
metrics.SchedulerQueueIncomingPods.WithLabelValues("active", BackoffComplete).Inc()
broadcast = true
}
if broadcast {
p.cond.Broadcast()
}
}
flushUnschedulablePodsLeftover
函数用于将在 unschedulablePods
中的存放时间超过 podMaxInUnschedulablePodsDuration
值的 pod 移动到 backoffQ
或 activeQ
中。
podMaxInUnschedulablePodsDuration
会根据配置传入,当没有传入,也就是使用了 Deprecated 那么会为5分钟。
func NewOptions() *Options {
o := &Options{
SecureServing: apiserveroptions.NewSecureServingOptions().WithLoopback(),
Authentication: apiserveroptions.NewDelegatingAuthenticationOptions(),
Authorization: apiserveroptions.NewDelegatingAuthorizationOptions(),
Deprecated: &DeprecatedOptions{
PodMaxInUnschedulablePodsDuration: 5 * time.Minute,
},
对于 flushUnschedulablePodsLeftover
就是做一个时间对比,然后添加到对应的队列中
func (p *PriorityQueue) flushUnschedulablePodsLeftover() {
p.lock.Lock()
defer p.lock.Unlock()
var podsToMove []*framework.QueuedPodInfo
currentTime := p.clock.Now()
for _, pInfo := range p.unschedulablePods.podInfoMap {
lastScheduleTime := pInfo.Timestamp
if currentTime.Sub(lastScheduleTime) > p.podMaxInUnschedulablePodsDuration {
podsToMove = append(podsToMove, pInfo)
}
}
if len(podsToMove) > 0 {
p.movePodsToActiveOrBackoffQueue(podsToMove, UnschedulableTimeout)
}
}
总结调度上下文流程
- 在构建一个 scheduler 时经历如下步骤:
- 准备cache,informer,queue,错误处理函数等
- 添加事件函数,会监听资源(如Pod),当有变动则触发对应事件函数,这是入站
activeQ
- 构建完成后会 run,run时会run一个
SchedulingQueue
,这个是作为不可调度队列BackoffQ
UnschedulablePods
- 不可调度队列会根据注册时定期消费队列中Pod将其添加到
activeQ
中
- 启动一个
scheduleOne
的loop,这个是调度上下文中所有的扩展点的执行,也是activeQ
的消费端scheduleOne
获取 pod- 执行各个扩展点,如果出错则 Error 函数
MakeDefaultErrorFunc
将其添加到不可调度队列中 - 回到不可调度队列中消费部分
Reference
kube-scheduler的调度上下文的更多相关文章
- Cocos2d-x 3.x 学习笔记(三):Scheduler Timer 调度与定时
1. 概述 Cocos2d-x 的 Scheduler 离不开 Timer.Timer 类是定时器,用来规定一个回调函数应该在何时被触发.Timer 封装了已运行时间.重复次数.已执行次数.延迟秒数 ...
- JStorm与Storm源码分析(三)--Scheduler,调度器
Scheduler作为Storm的调度器,负责为Topology分配可用资源. Storm提供了IScheduler接口,用户可以通过实现该接口来自定义Scheduler. 其定义如下: public ...
- 023 Spark Scheduler(调度)
1.官网 http://spark.apache.org/docs/1.6.1/job-scheduling.html http://spark.apache.org/docs/1.6.1/confi ...
- 三:Fair Scheduler 公平调度器
参考资料: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html http://h ...
- 二 Capacity Scheduler 计算能力调度器
官网的写的太难懂,参考:http://www.360doc.com/content/14/0603/14/14935022_383254798.shtml Capacity Scheduler 一种可 ...
- K8s Scheduler 在调度 pod 过程中遗漏部分节点的问题排查
问题现象 在TKE控制台上新建版本为v1.18.4(详细版本号 < v1.18.4-tke.5)的独立集群,其中,集群的节点信息如下: 有3个master node和1个worker node, ...
- RxJS——调度器(Scheduler)
调度器 什么是调度器?调度器是当开始订阅时,控制通知推送的.它由三个部分组成. 调度是数据结构.它知道怎样在优先级或其他标准去存储和排队运行的任务 调度器是一个执行上下文.它表示任务在何时何地执行(例 ...
- Hadoop的三种调度器FIFO、Capacity Scheduler、Fair Scheduler(转载)
目前Hadoop有三种比较流行的资源调度器:FIFO .Capacity Scheduler.Fair Scheduler.目前Hadoop2.7默认使用的是Capacity Scheduler容量调 ...
- YARN调度器(Scheduler)详解
理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资 ...
随机推荐
- shell脚本实现MySQL全量备份+异地备份
一.知识储备工作: Mysql导出数据库语法: mysqldump -u用户名 -p密码 数据库名 > 数据库名.sql shell脚本for循环及if条件判断基本语法 gzip压缩文件用法 r ...
- css实现气泡提示框三角及css中drop-shadow的使用
css 做一个弹出气泡,样式怎么设计? 难点: 要实现白色三角型,可以在伪元素before和after上设置一个黑.一个白三角形,白三角形会挡住黑的,从而实现. &::before, & ...
- 实践GoF的23种设计模式:建造者模式
摘要:针对这种对象成员较多,创建对象逻辑较为繁琐的场景,非常适合使用建造者模式来进行优化. 本文分享自华为云社区<[Go实现]实践GoF的23种设计模式:建造者模式>,作者: 元闰子. 简 ...
- [数学基础] 4 欧几里得算法&扩展欧几里得算法
欧几里得算法 欧几里得算法基于的性质: 若\(d|a, a|b\),则\(d|(ax+by)\) \((a,b)=(b,a~mod~b)\) 第二条性质证明: \(\because a~mod~b=a ...
- JDK自带线程池学习
JDK自带线程池 线程池的状态 线程有如下状态 RUNNING状态:Accept new tasks and process queued tasks SHUTDOWN状态:Don't accept ...
- SSO 方案演进
背景介绍 随着业务与技术的发展,现今比以往任何时候都更需要单点登录 SSO 身份验证. 现在几乎每个网站都需要某种形式的身份验证才能访问其功能和内容. 随着网站和服务数量的增加,集中登录系统已成为一种 ...
- 走进Linux的世界
开源软件Linux的起源: Linux--操作系统. Linux,1991年Linux之父林纳斯 本纳第克特 托瓦兹,创建了Linux操作系统内核(开源). Linux的发行版和RHCE 1.Linu ...
- Three.js 打造缤纷夏日3D梦中情岛 🌊
声明:本文涉及图文和模型素材仅用于个人学习.研究和欣赏,请勿二次修改.非法传播.转载.出版.商用.及进行其他获利行为. 背景 深居内陆的人们,大概每个人都有过大海之梦吧.夏日傍晚在沙滩漫步奔跑:或是在 ...
- uniapp小程序webSocket封装使用
目录 1,前言 2,代码实现 3,使用 3.1,初始化 3.2,发送消息 3.3,接收消息 1,前言 最近在做IOT的项目,里面有个小程序要用到webSocket,借这个机会,封装了一个uniapp小 ...
- 图解MySQL逻辑备份的实现流程
1. 摘要 数据作为一家公司的重要资产,其重要程度不言而喻.数据库为数据提供存取服务,担任着重要的角色,如果因数据误删.服务器故障.病毒入侵等原因导致数据丢失或服务不可用,会对公司造成重大损失,所以数 ...