pytorch代码练习
pytorch练习
使用torch.Tensor定义数据 , tensor的意思是张量,是数字各种形式的总称,可以定义数、向量、二维数组和张量。
import torch
# 可以是一个数
x = torch.tensor(666)
print(x)
# 可以是一维数组(向量)
x = torch.tensor([1,2,3,4,5,6])
print(x)
# 可以是二维数组(矩阵)
x = torch.ones(2,3)
print(x)
# 可以是任意维度的数组(张量)
x = torch.ones(2,3,4)
print(x)
可通过多种方法创建tensor
# 创建一个空张量
x = torch.empty(5,3)
print(x)
# 创建一个随机初始化的张量
x = torch.rand(5,3)
print(x)
# 创建一个全0的张量,里面的数据类型为 long
x = torch.zeros(5,3,dtype=torch.long)
print(x)
# 基于现有的tensor,创建一个新tensor,
# 从而可以利用原有的tensor的dtype,device,size之类的属性信息
y = x.new_ones(5,3) #tensor new_* 方法,利用原来tensor的dtype,device
print(y)
z = torch.randn_like(x, dtype=torch.float) # 利用原来的tensor的大小,但是重新定义了dtype
print(z)
可使用tensor进行的运算
基本运算,加减乘除,求幂求余
布尔运算,大于小于,最大最小
线性运算,矩阵乘法,求模,求行列式
# 返回 m 中元素的数量
print(m.numel())
# 返回 第0行,第2列的数
print(m[0][2])
# 返回 第1列的全部元素
print(m[:, 1])
# 返回 第0行的全部元素
print(m[0, :])
# Create tensor of numbers from 1 to 5
# 注意这里结果是1到4,没有5
v = torch.arange(1, 5)
print(v)
# Scalar product
m @ v
# Calculated by 1*2 + 2*5 + 3*3 + 4*7
m[[0], :] @ v
# Add a random tensor of size 2x4 to m
m + torch.rand(2, 4)
# 转置,由 2x4 变为 4x2
print(m.t())
# 使用 transpose 也可以达到相同的效果,具体使用方法可以百度
print(m.transpose(0, 1))
# returns a 1D tensor of steps equally spaced points between start=3, end=8 and steps=20
torch.linspace(3, 8, 20)
#输出为tensor([3.0000, 3.2632, 3.5263, 3.7895, 4.0526, 4.3158, 4.5789, 4.8421, 5.1053,5.3684, 5.6316, 5.8947, 6.1579, 6.4211, 6.6842, 6.9474, 7.2105, 7.4737,7.7368, 8.0000])
from matplotlib import pyplot as plt # matlabplotlib 只能显示numpy类型的数据,下面展示了转换数据类型,然后显示
# 注意 randn 是生成均值为 0, 方差为 1 的随机数
# 下面是生成 1000 个随机数,并按照 100 个 bin 统计直方图
plt.hist(torch.randn(1000).numpy(), 100);
#注意上面转换为numpy的方法
# 当数据非常非常多的时候,正态分布会体现的非常明显
plt.hist(torch.randn(10**6).numpy(), 100); # 创建两个 1x4 的tensor
a = torch.Tensor([[1, 2, 3, 4]])
b = torch.Tensor([[5, 6, 7, 8]]) # 在 0 方向拼接 (即在 Y 方各上拼接), 会得到 2x4 的矩阵
print( torch.cat((a,b), 0))
# 在 1 方向拼接 (即在 X 方各上拼接), 会得到 1x8 的矩阵
print( torch.cat((a,b), 1))
螺旋数据分类
!wget https://raw.githubusercontent.com/Atcold/pytorch-Deep-Learning/master/res/plot_lib.py
下载plot_lib绘图库到本地,引入基本库,初始化参数。
import random
import torch
from torch import nn, optim
import math
from IPython import display
from plot_lib import plot_data, plot_model, set_default # 因为colab是支持GPU的,torch 将在 GPU 上运行
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('device: ', device) # 初始化随机数种子。神经网络的参数都是随机初始化的,
# 不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,
# 因此,在pytorch中,通过设置随机数种子也可以达到这个目的
seed = 12345
random.seed(seed)
torch.manual_seed(seed) N = 1000 # 每类样本的数量
D = 2 # 每个样本的特征维度
C = 3 # 样本的类别
H = 100 # 神经网络里隐层单元的数量
X = torch.zeros(N * C, D).to(device)
Y = torch.zeros(N * C, dtype=torch.long).to(device)
for c in range(C):
index = 0
t = torch.linspace(0, 1, N) # 在[0,1]间均匀的取10000个数,赋给t
# 下面的代码不用理解太多,总之是根据公式计算出三类样本(可以构成螺旋形)
# torch.randn(N) 是得到 N 个均值为0,方差为 1 的一组随机数,注意要和 rand 区分开
inner_var = torch.linspace( (2*math.pi/C)*c, (2*math.pi/C)*(2+c), N) + torch.randn(N) * 0.2 # 每个样本的(x,y)坐标都保存在 X 里
# Y 里存储的是样本的类别,分别为 [0, 1, 2]
for ix in range(N * c, N * (c + 1)):
X[ix] = t[index] * torch.FloatTensor((math.sin(inner_var[index]), math.cos(inner_var[index])))
Y[ix] = c
index += 1 print("Shapes:")
print("X:", X.size())
print("Y:", Y.size())
使用plot_lib的plot_data函数显示图象。
构建线性模型
learning_rate = 1e-3
lambda_l2 = 1e-5 # nn 包用来创建线性模型
# 每一个线性模型都包含 weight 和 bias
model = nn.Sequential(
nn.Linear(D, H),
nn.Linear(H, C)
)
model.to(device) # 把模型放到GPU上 # nn 包含多种不同的损失函数,这里使用的是交叉熵(cross entropy loss)损失函数
criterion = torch.nn.CrossEntropyLoss() # 这里使用 optim 包进行随机梯度下降(stochastic gradient descent)优化
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=lambda_l2) # 开始训练
for t in range(1000):
# 把数据输入模型,得到预测结果
y_pred = model(X)
# 计算损失和准确率
loss = criterion(y_pred, Y)
score, predicted = torch.max(y_pred, 1)
acc = (Y == predicted).sum().float() / len(Y)
print('[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f' % (t, loss.item(), acc))
display.clear_output(wait=True) # 反向传播前把梯度置 0
optimizer.zero_grad()
# 反向传播优化
loss.backward()
# 更新全部参数
optimizer.step()
print(y_pred.shape)
print(y_pred[10, :])
print(score[10])
print(predicted[10])
使用 print(model) 把模型输出,可以看到有两层:
- 第一层输入为 2(因为特征维度为主2),输出为 100;
- 第二层输入为 100 (上一层的输出),输出为 3(类别数)
从上面图示可以看出,线性模型的准确率最高只能达到 50% 左右,对于这样复杂的一个数据分布,线性模型难以实现准确分类。
构建双层神经网络模型
learning_rate = 1e-3
lambda_l2 = 1e-5 # 这里可以看到,和上面模型不同的是,在两层之间加入了一个 ReLU 激活函数
model = nn.Sequential(
nn.Linear(D, H),
nn.ReLU(), #与1代码块的唯一区别,加入了激活函数
nn.Linear(H, C)
)
model.to(device) # 下面的代码和之前是完全一样的,这里不过多叙述
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=lambda_l2) # built-in L2 # 训练模型,和之前的代码是完全一样的
for t in range(1000):
y_pred = model(X)
loss = criterion(y_pred, Y)
score, predicted = torch.max(y_pred, 1)
acc = ((Y == predicted).sum().float() / len(Y))
print("[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f" % (t, loss.item(), acc))
display.clear_output(wait=True) # zero the gradients before running the backward pass.
optimizer.zero_grad()
# Backward pass to compute the gradient
loss.backward()
# Update params
optimizer.step()
发现分类效果较好,关键在于其加入了ReLU激活函数。ReLU函数速度快,精度高,逐渐取代了Sigmoid函数。
pytorch代码练习的更多相关文章
- (原)SphereFace及其pytorch代码
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...
- 目标检测之Faster-RCNN的pytorch代码详解(数据预处理篇)
首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码) 今天看完了simple- ...
- (转载)PyTorch代码规范最佳实践和样式指南
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...
- PyTorch代码调试利器: 自动print每行代码的Tensor信息
本文介绍一个用于 PyTorch 代码的实用工具 TorchSnooper.作者是TorchSnooper的作者,也是PyTorch开发者之一. GitHub 项目地址: https://github ...
- 如何将tensorflow1.x代码改写为pytorch代码(以图注意力网络(GAT)为例)
之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的. 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码, ...
- pointnet.pytorch代码解析
pointnet.pytorch代码解析 代码运行 Training cd utils python train_classification.py --dataset <dataset pat ...
- 残差网络resnet理解与pytorch代码实现
写在前面 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服 ...
- 记录下pytorch代码从0.3版本迁移到0.4版本要做的一些更改。
1. UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to in ...
- 运行pytorch代码遇到的error解决办法
1.no CUDA-capable device is detected 首先考虑的是cuda的驱动问题,查看gpu显示是否正常,然后更新最新的cuda驱动: 第二个考虑的是cuda设备的默认参数是否 ...
- 目标检测之Faster-RCNN的pytorch代码详解(模型训练篇)
本文所用代码gayhub的地址:https://github.com/chenyuntc/simple-faster-rcnn-pytorch (非本人所写,博文只是解释代码) 好长时间没有发博客了 ...
随机推荐
- Dockerfile CMD命令提示no such file
过程: 自制一个kafka镜像,启动时CMD命令报ERROR # 安装 kafka ADD kafka_2.12-2.4.1.tgz /home/pmish/software ENV KAFKA_HO ...
- 标量子查询加聚合函数sql改写一
标量子查询的语句: select /*+ GATHER_PLAN_STATISTICS dwtest */ empno, (select count(*) from DEPT1 b where b.i ...
- 用字典代替'if-elif-else'
在实际应用中,我们经常会需要采用if-elif-else控制语句以根据不同条件,作出不同的操作.if-elif-else固然可以,但是它也存在冗余的缺点,特别是当条件较多时这一缺点尤为明显.因此,本文 ...
- keypress和keydown的区别
keypress不识别功能键,比如ctrl,alt,shift,上下左右.keypress返回的ascII码区分大小写.输入小写a返回97,输入大写A返回65. keydown识别.keydown返回 ...
- stream 链式结构
Double totalPaymentAmount = Optional.ofNullable(wayfairMonthBill.getPaymentAmountDetailJson()) .filt ...
- docker容器启动报错Unable to access jarfile
1.错误表现 Errot: Unable to access jarfile /opt/run-java/deployments/chiano.jar 2.原因:容器的基础镜像对jar的权限有要求 3 ...
- mybati之sql集合
mybatis 详解(五)------动态SQL - YSOcean - 博客园 (cnblogs.com) mybatis参数注入: 根据参数名称 使用#{} 注入参数 <insert id= ...
- element-ui casader组件动态加载的回显问题
最近在做项目的时候用到了element-ui的cascader来做省市区的级联显示 我要做的需求就是在选择某个省的时候,再去加载省下面的所有市,在实现这个需求的过程中遇到了二级菜单不能反显的情况.以下 ...
- mac SIP系统完整性保护关闭方法
许多Mac用户反应,装了部分软件后打不开,那可能是sip系统完整性没有关闭.下面我们就来看一下如何关闭sip系统完整性. 检查状态 在sip系统完整性关闭前,我们先检查是否启用了SIP系统完整性保护. ...
- SSIS Package Version
当 SSIS 首次出现时,有大量关于所有问题的笑话和帖子,以及每个人如何认为 DTS 更好,他们真的必须转换吗?多年来,我开始欣赏 SSIS.它是一个非常强大和有用的工具,可以做一些了不起的事情.当然 ...