redis高可用、redis集群、redis缓存优化
今日内容概要
- redis高可用
- redis集群
- redis缓存优化
内容详细
1、redis高可用
# 主从复制存在的问题:
1 主从复制,主节点发生故障,需要做故障转移,可以手动转移:让其中一个slave变成master--->哨兵
2 主从复制,只能主写数据,所以写能力和存储能力有限----》集群
# 案例
-一主两从,主写数据,从读数据
-如果主库挂掉,从库只能读,redis就不能对外提供服务了,它就不高可用
-即便主挂掉,选一个从库作为主库,继续对外提供服务 就是高可用
-原来的主库,又启动起来了,它现在作为从库
# 使用哨兵完成上面的事情 sentinel--》哨兵
##### 搭建步骤
# 搭建一主两从
# 配置3个哨兵
# 主一
daemonize yes
dir ./data3
protected-mode no
bind 0.0.0.0
logfile "redis_sentinel3.log"
sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 30000
sentinel parallel-syncs mymaster 1
sentinel failover-timeout mymaster 180000
# 从一
port 26380
daemonize yes
dir ./data2
protected-mode no
bind 0.0.0.0
logfile "redis_sentinel3.log"
sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 30000
sentinel parallel-syncs mymaster 1
sentinel failover-timeout mymaster 180000
# 从二
port 26381
daemonize yes
dir ./data
protected-mode no
bind 0.0.0.0
logfile "redis_sentinel1.log"
sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 30000
sentinel parallel-syncs mymaster 1
sentinel failover-timeout mymaster 180000
# 启动三个哨兵
./src/redis-sentinel sentinel_26379.conf
./src/redis-sentinel sentinel_26378.conf
./src/redis-sentinel sentinel_26377.conf
# 客户端连接到某一个redis上
info # 查看主从信息
# 客户端连到某个 sentinel上(一个sentinel类似于一个redis-server,客户端可以连接)
redis-cli -p 26379 # 连到这个哨兵上
info
'''
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=127.0.0.1:6379,slaves=2,sentinels=3
'''
# 演示故障切换
# 停掉主库---》6379
shutdown
# 哨兵认为主挂了,会自动选一个从库当主库
info
选择了6380作为主了
# 把6379启动,6379现在变成从库
哨兵搭建后的python连接
# python连接redis---》写写到主库,读从从库中读---》一旦用了高可用(主库会变)---》python连接哨兵---》通过哨兵返回主,去写,返回从,去读
import redis
from redis.sentinel import Sentinel
# 连接哨兵服务器(主机名也可以用域名)
# 127.0.0.1:26379
sentinel = Sentinel([('127.0.0.1', 26379),
('127.0.0.1', 26380),
('127.0.0.1', 26381)
],
socket_timeout=5)
print(sentinel)
# 获取主服务器地址
master = sentinel.discover_master('mymaster')
print(master) # 返回所有主
# 获取从服务器地址
slave = sentinel.discover_slaves('mymaster')
print(slave) # 返回所有从
##### 读写分离
# 获取主服务器进行写入
master = sentinel.master_for('mymaster', socket_timeout=0.5)
w_ret = master.set('foo', 'bar')
slave = sentinel.slave_for('mymaster', socket_timeout=0.5)
r_ret = slave.get('foo')
print(r_ret)
2、redis集群
# 主从复制,只能主写数据,所以写能力和存储能力有限----》集群
# 存在问题
1 并发量:单机redis qps为10w/s,但是我们可能需要百万级别的并发量
2 数据量:机器内存16g--256g,如果存500g数据呢?
# 解决:加机器,分布式
redis cluster 在2015年的 3.0 版本加入了,满足分布式的需求
# 分布式数据库
假设全量的数据非常大,500g,单机已经无法满足,我们需要进行分区,分到若干个子集中
# 分区方式
-哈希分布
原理:hash分区: 节点取余 ,假设3台机器, hash(key)%3,落到不同节点上
优点:热点数据分散
缺点:不利于批量查询
-顺序分布
原理:100个数据分到3个节点上 1--33第一个节点;34--66第二个节点;67--100第三个节点(很多关系型数据库使用此种方式,mysql通常用它)
缺点:热点数据太集中
# mysql 官方没有集群方案---》第三方解决方案---》顺序,哈希
# 哈希分区
-节点取余:后期扩容--》迁移数据总量大---》推荐翻倍库容
-一致性 hash
每个节点负责一部分数据,对key进行hash,得到结果在node1和node2之间,就放到node2中,顺时针查找
扩容迁移数据迁移少,数据不均衡
-虚拟槽分区(redis集群)
预设虚拟槽:每个槽映射一个数据子集,一般比节点数大
良好的哈希函数:如CRC16
服务端管理节点、槽、数据:如redis cluster(槽的范围0–16383)
2.1 搭建
# 6台机器,3个节点的集群,另外三台做副本库(从库)
# 自动故障转移,3个主节点,如果有一个挂了,另外一个从库就会升级为主库
# redis的端口7000
# redis的端口7001
# redis的端口7002
# redis的端口7003
# redis的端口7004
# redis的端口7005
# 只要集群中有一个故障了,整个就不对外提供服务了,这个实际不合理,假设有50个节点,一个节点故障了,所有不提供服务了
# 配置文件
port 7000
daemonize yes
dir "/root/s20/redis-5.0.7/data"
logfile "7000.log"
dbfilename "dump-7000.rdb"
cluster-enabled yes
cluster-config-file nodes-7000.conf
cluster-require-full-coverage yes
# 快速生成其他配置
sed 's/7000/7001/g' redis-7000.conf > redis-7001.conf
sed 's/7000/7002/g' redis-7000.conf > redis-7002.conf
sed 's/7000/7003/g' redis-7000.conf > redis-7003.conf
sed 's/7000/7004/g' redis-7000.conf > redis-7004.conf
sed 's/7000/7005/g' redis-7000.conf > redis-7005.conf
# 启动6个节点
./src/redis-server ./redis-7000.conf
ps -ef |grep redis
./src/redis-server ./redis-7001.conf
./src/redis-server ./redis-7002.conf
./src/redis-server ./redis-7003.conf
./src/redis-server ./redis-7004.conf
./src/redis-server ./redis-7005.conf
### 客户端连上---》放数据--->想搭建集群---》集群模式没有分槽---》放的这个数据不知道放到哪个节点--》放不进去----》搭建完成才能写入数据
## 客户端链接上的命令:
cluster nodes # 如果没有搭建完成,只能看到自己
cluster info # 集群状态是成功\失败的
# 搭建集群 4.x以前版本,比较麻烦
-先meet
-指派槽
-建立主从
# 快速搭建集群 4.x以后,只需要这一条,自动meet,自动指派槽,自动建主从
# 注意这个数字 cluster-replicas 1 ---》指的是每个主节点有几个从节点
redis-cli --cluster create --cluster-replicas 1 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005
### 演示写入数据
-在7001上写入 name lqz
-去7002上查不到name
-对name crc16哈希运算完---》算完的槽--->知道哪个节点管了哪些槽---》告诉你去哪个节点存
# 以集群模式登陆,
-无论在哪个主节点,都能写入数据,获取数据
redis-cli -c -p 端口 # 以集群模式登陆,如果操作不到,自动重定向过去
# 演示故障转移
-7001 是个主库---》主库停掉--》7005从库会自动升级为主库
2.2 集群扩容/缩容
## 集群扩容
sed 's/7000/7006/g' redis-7000.conf > redis-7006.conf
sed 's/7000/7007/g' redis-7000.conf > redis-7007.conf
./src/redis-server ./redis-7006.conf
./src/redis-server ./redis-7007.conf
### 方式一
在7000上执行
redis-cli -p 7000 cluster meet 127.0.0.1 7006
redis-cli -p 7000 cluster meet 127.0.0.1 7007
### 方式二
redis-cli --cluster add-node 127.0.0.1:7006 127.0.0.1:7000
redis-cli --cluster add-node 127.0.0.1:7007 127.0.0.1:7000
# 让7007做为7006的从
redis-cli -p 7007 cluster replicate 2d657119470fd7c65c366698f20cc104295b7555
##### 分槽
redis-cli --cluster reshard 127.0.0.1:7000
# 16384总共平均分配到4个节点,每个节点需要有:4096槽
数4096 指定到7006节点上
自动从三个节点中的每个节点拿一部分槽放到7006身上,凑够4096个
###### 缩容
# 下线迁槽(把7006的1366个槽迁移到7000上)--->把槽迁走
# 从谁那里迁到谁身上
redis-cli --cluster reshard --cluster-from 2d657119470fd7c65c366698f20cc104295b7555 --cluster-to 997257c78c2995372c8cde228850b4b101d2a03b --cluster-slots 1365 127.0.0.1:7000
yes
redis-cli --cluster reshard --cluster-from 2d657119470fd7c65c366698f20cc104295b7555 --cluster-to c763786ad7fa9c65fb9182a8cfe0be4825ee96a0 --cluster-slots 1366 127.0.0.1:7005
yes
redis-cli --cluster reshard --cluster-from 2d657119470fd7c65c366698f20cc104295b7555 --cluster-to 1993efb87276df5986bdca56930aaa8ec3e78287 --cluster-slots 1366 127.0.0.1:7002
yes
# 忘记节点,关闭节点
redis-cli --cluster del-node 127.0.0.1:7000 1cddf0889d525516ad38a714ad5d38bead74dbcb(从库id) # 先下从,再下主,因为先下主会触发故障转移
redis-cli --cluster del-node 127.0.0.1:7000 2d657119470fd7c65c366698f20cc104295b7555(主库id)
# 关掉其中一个主,另一个从立马变成主顶上, 重启停止的主,发现变成了从
3、redis缓存优化
# 双写一致性
-定时更新
-增数据删缓存
-增数据改缓存
# redis自身有缓存更新策略---》redis占内存不能无限大,可以控制,内存就是满了
# 缓存更新策略
1. LRU -Least Recently Used,没有被使用时间最长的
# LRU配置
maxmemory-policy:volatile-lru
(1)noeviction: 如果内存使用达到了maxmemory,client还要继续写入数据,那么就直接报错给客户端
(2)allkeys-lru: 就是我们常说的LRU算法,移除掉最近最少使用的那些keys对应的数据,ps最长用的策略
(3)volatile-lru: 也是采取LRU算法,但是仅仅针对那些设置了指定存活时间(TTL)的key才会清理掉
(4)allkeys-random: 随机选择一些key来删除掉
(5)volatile-random: 随机选择一些设置了TTL的key来删除掉
(6)volatile-ttl: 移除掉部分keys,选择那些TTL时间比较短的keys
2. LFU -Least Frequenty User,一定时间段内使用次数最少的
# LFU配置 Redis4.0之后为maxmemory_policy淘汰策略添加了两个LFU模式:
volatile-lfu:对有过期时间的key采用LFU淘汰算法
allkeys-lfu:对全部key采用LFU淘汰算法
# 还有2个配置可以调整LFU算法:
lfu-log-factor 10
lfu-decay-time 1
# lfu-log-factor可以调整计数器counter的增长速度,lfu-log-factor越大,counter增长的越慢。
# lfu-decay-time是一个以分钟为单位的数值,可以调整counter的减少速度
3. FIFO -First In First Out
### 缓存穿透--(缓存中没有,数据中也没有---》基本是恶意攻击)
# 描述:
缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起为id为“-1”的数据或id为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大
# 解决方案:
1 接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截
2 从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
3 通过布隆过滤器实现---》把数据库中存在的数据,放到布隆过滤器中--》查的时候,去布隆过滤器查一下在不在---》在的话,继续往后走,不在的话直接给前端错误
### 缓存击穿(缓存中没有,数据库中有)
# 描述:
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力
# 解决方案:
设置热点数据永远不过期。
### 缓存雪崩
# 描述:
缓存雪崩是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。和缓存击穿不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库
# 解决方案:
1 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
2 如果缓存数据库是分布式部署,将热点数据均匀分布在不同搞得缓存数据库中
3 设置热点数据永远不过期。
redis高可用、redis集群、redis缓存优化的更多相关文章
- Redis高可用之集群配置(六)
0.Redis目录结构 1)Redis介绍及部署在CentOS7上(一) 2)Redis指令与数据结构(二) 3)Redis客户端连接以及持久化数据(三) 4)Redis高可用之主从复制实践(四) 5 ...
- Redis高可用复制集群实现
redis简单介绍 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库.Redis 与其他 key - value 缓存产品有以下三个特点: 支持数据的持久化,可以将 ...
- Redis高可用及集群
目录 Redis主从复制 环境准备 主从复制命令 Redis Sentinel 功能 Redis Sentinel配置 Redis集群 Redis主从复制 使用异步复制 一个服务器可以有多个从服务器 ...
- redis高可用分布式集群
一,高可用 高可用(High Availability),是当一台服务器停止服务后,对于业务及用户毫无影响. 停止服务的原因可能由于网卡.路由器.机房.CPU负载过高.内存溢出.自然灾害等不可预期的原 ...
- Redis 高可用分布式集群
一,高可用 高可用(High Availability),是当一台服务器停止服务后,对于业务及用户毫无影响. 停止服务的原因可能由于网卡.路由器.机房.CPU负载过高.内存溢出.自然灾害等不可预期的原 ...
- Redis之高可用、集群、云平台搭建
原文:Redis之高可用.集群.云平台搭建 文章大纲 一.基础知识学习二.Redis常见的几种架构及优缺点总结三.Redis之Redis Sentinel(哨兵)实战四.Redis之Redis Clu ...
- 一寸宕机一寸血,十万容器十万兵|Win10/Mac系统下基于Kubernetes(k8s)搭建Gunicorn+Flask高可用Web集群
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_185 2021年,君不言容器技术则已,欲言容器则必称Docker,毫无疑问,它是当今最流行的容器技术之一,但是当我们面对海量的镜像 ...
- 搭建高可用mongodb集群(四)—— 分片(经典)
转自:http://www.lanceyan.com/tech/arch/mongodb_shard1.html 按照上一节中<搭建高可用mongodb集群(三)-- 深入副本集>搭建后还 ...
- [转]搭建高可用mongodb集群(四)—— 分片
按照上一节中<搭建高可用mongodb集群(三)—— 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的 ...
- 搭建高可用mongodb集群(四)—— 分片
按照上一节中<搭建高可用mongodb集群(三)—— 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的 ...
随机推荐
- Clickhouse-alter 对副本表修改表结构报元数据错误
[应用场景] 对分片副本表的列进行 alter 操作 [问题复现] [解决办法] 检查该分片所有副本表的表结构和 zk 上存储的 column 信息保持一致,检查本地的表结构 sql 文件 /data ...
- 实现自定义的小程序底部tabbar
背景 诶,当然是为了实现更有温度的代码啦(背后设计师拿着刀对着我) 自带tabbar app.json中配置: tabBar: { backgroundColor: '#fff', borderSty ...
- 【网易云信】H5 容器技术方案
Native 开发原生应用是手机操作系统厂商(目前主要是苹果的 iOS 和 Google 的 Android)对外界提供的标准化的开发模式,他们对于 Native 开发提供了一套标准化实现和优化方案. ...
- python爬虫---链家网二手房价采集
代码: import requests from lxml import etree import pandas as pd from pyecharts.charts import Bar from ...
- java中如何打印规定图案? 举例说明
9.4 print out the following pattern(打印图案). * *** ***** ******* ***** *** * 提示: 1)本题上面的图案和下面的图案是一样的.所 ...
- Jackson 和 fastJSON 导包异常
内容 一.异常信息 HTTP Status 400 - type Status report message org.springframework.http.converter.HttpMessag ...
- 获取iframe引入页面内的元素
在web开发中,经常会用到iframe,难免会碰到需要在父窗口中使用iframe中的元素.或者在iframe框架中使用父窗口的元素.js在父窗口中获取iframe中的元素1. 格式:window ...
- java实现二叉树的Node节点定义手撕8种遍历(一遍过)
java实现二叉树的Node节点定义手撕8种遍历(一遍过) 用java的思想和程序从最基本的怎么将一个int型的数组变成Node树状结构说起,再到递归前序遍历,递归中序遍历,递归后序遍历,非递归前序遍 ...
- 2021.07.17 题解 CF1385E Directing Edges(拓扑排序)
2021.07.17 题解 CF1385E Directing Edges(拓扑排序) CF1385E Directing Edges - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) ...
- Flex 的 多种对齐属性
1. html 结构 <div id="container"> <div class="item item-1"> <h3> ...