题目

神题。很多东西都不知道是怎么凑出来的,随意设置几个变量,之间就产生了密切的关系。下次碰到这种题应该还是不会做罢。

令\(E_x\)为最后结束时所有的饼干都在第x个人手中的概率*时间的和。\(ans=\sum E_x\)。

令\(C\)为现在所有的饼干都在第x个人手中,要将它们全部转移到第y(\(x \neq y\))个人手中的期望步数。显然对于所有的x,y,C都是相同的。

令\(P_i\)为游戏结束时,所有饼干都在第i人手中的概率。

假设篡改游戏规则,饼干全在第x个人手中时游戏才结束。令此时的期望步数为\(E'_x\)。

那么就有如下等式:

\[E'_x=E_x+\sum_{i \neq x} E_i+P_iC
\]

证明就考虑\(E'_x\)的组成,第一次把所有的饼干都集中到一个人手中时,有一定的可能就是集中到了x手中,这件事的概率*期望步数是\(E_x\);否则就要加上从这个人到x的期望步数乘上概率,是\(P_iC\)。移项并对所有x求和可得:

\[n\sum E_x=\sum E'_x -C(n-1)\sum P_i\\
n \cdot ans=\sum E'_x -C(n-1)
\]

所以求出所有\(E'_x\)和\(C\)就行了。令\(f_i\)表示需要把所有饼干都移动到某个人手中,这个人手中现在有i个饼干的还需要的步数。(反正想想转移就发现是可以这样DP的) 转移为(\(m表示\sum a_i\)):

\(f_m=0\)

\(f_0=1+\frac{n-2}{n-1}f_0+\frac{1}{n-1}f_1\)(每块饼干有n-1种走法,n-2/n-1种走到别的人手里,1/n-1种走到这个人手里)

其他:\(f_i=1+\frac{i}{m}f_{i-1}+\frac{m-i}{m}(\frac{n-2}{n-1}f_i+\frac{1}{n-1}f_{i+1})\)(先讨论动手里的还是外面的饼干)

把最后一个式子化成\(Af_{i-1}+(B-1)f_i+Cf_{i+1}+1=0\)的形式,通过推出这个式子的过程可以发现\(A+B+C=0\)(因为是三种可能性的概率和)。三个未知数不好处理,我们把f差分一下,令\(g_i=f_i-f_{i+1}\)(注意是下标小的-下标大的)。

先试试如果\(g_{i-1}\)的系数是A会怎么样。显然应该让\(f_i\)的系数=B。发现刚好得到了一个合法的式子\(Ag_{i-1}+(A+B-1)g_i+1=0\)(记得A+B+C=0)。

由第一个转移式知道\(g_0=n-1\)所以就可以递推出所有\(g_i\),求个后缀和就是\(f_i\),这题就做完了。时间复杂度\(O(n)\),下面代码里写的\(O(nlogn)\),因为懒。

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(LL i=0;i<n;++i)
#define repn(i,n) for(LL i=1;i<=n;++i)
#define LL long long
#define pii pair <LL,LL>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back using namespace std; const LL MOD=998244353; LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
} LL n,a[100010],g[300010],m=0,f[300010]; int main()
{
cin>>n;
rep(i,n) scanf("%lld",&a[i]),m+=a[i];
g[0]=n-1;
repn(i,m-1)
{
LL A=i*qpow(m,MOD-2)%MOD,B=(m-i)*(n-2)%MOD*qpow(m,MOD-2)%MOD*qpow(n-1,MOD-2)%MOD;
g[i]=(MOD+MOD-1-A*g[i-1]%MOD)*qpow((A+B-1+MOD)%MOD,MOD-2)%MOD;
}
f[m]=0;
for(int i=m-1;i>=0;--i) f[i]=(f[i+1]+g[i])%MOD;
LL ans=0;
rep(i,n) (ans+=f[a[i]])%=MOD;
(ans+=MOD-(n-1)*f[0]%MOD)%=MOD;
(ans*=qpow(n,MOD-2))%=MOD;
cout<<ans<<endl;
return 0;
}

[题解] Codeforces 1349 D Slime and Biscuits 概率,推式子,DP,解方程的更多相关文章

  1. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  2. Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...

  3. Codeforces 1139D(推式子+dp)

    题目传送 推公式博客传送 推完式子就是去朴素地求就行了Orz const int maxn = 1e5 + 5; const int mod = 1e9 + 7; int m, mu[maxn], v ...

  4. 题解 P5320 - [BJOI2019]勘破神机(推式子+第一类斯特林数)

    洛谷题面传送门 神仙题(为什么就没能自己想出来呢/zk/zk) 这是我 AC 的第 \(2\times 10^3\) 道题哦 首先考虑 \(m=2\) 的情况,我们首先可以想到一个非常 trivial ...

  5. 概率与期望详解!一次精通oi中的概率期望

    目录 基础概念 最大值不超过Y的期望 概率为P时期望成功次数 基础问题 拿球 随机游走 经典问题 期望线性性练习题 例题选讲 noip2016换教室 区间交 0-1边树求直径期望 球染色 区间翻转 二 ...

  6. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  7. Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

    手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...

  8. Codeforces Round #221 (Div. 1) B. Maximum Submatrix 2 dp排序

    B. Maximum Submatrix 2 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset ...

  9. Codeforces Round #277 (Div. 2) E. LIS of Sequence DP

    E. LIS of Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/486/pr ...

随机推荐

  1. 在docker容器中如何自动生成配置文件(以nginx配置为例)

    应用场景类似于多个域名要起多个容器,有些参数有些域名需要,有些域名不需要,或者参数的值不太一样,需要去对应的配置文件修改,不太灵活,如果通过变量的方式直接定义在Dockerfile文件中,需要哪些参数 ...

  2. 那些舍不得删除的 MP3--批量修改mp3的ID3tag

    整理电脑时发现很多mp3.那是大约2001年至2009年之间.那个时候大家听歌,还是习惯从网上下载mp3.虽然现在听歌比从前方便多了,简单到只需在APP中输入歌名,但用播放器听mp3的感觉是完全不同的 ...

  3. 用 Antlr 重构脚本解释器

    前言 在上一个版本实现的脚本解释器 GScript 中实现了基本的四则运算以及 AST 的生成. 当我准备再新增一个 % 取模的运算符时,会发现工作很繁琐而且几乎都是重复的:主要是两步: 需要在词法解 ...

  4. Ubuntu添加非root用户到Docker用户组

    前言 首先平常公司的Linux生产环境为了防止误操作导致灾难性问题,一般都不会给我们开发开放root管理员的账号权限.所以平常在Ubuntu的普通用户登录的时候,要操作Dcoker一般都需要带上sud ...

  5. Host long.com not found: 2(SERVFAIL)

    环境: centos  7.9 地址:192.168.200.100 相关配置 name.conf文件: named.zones文件: 正反解析文件: 重启DNS服务: 1 [root@server ...

  6. navicat创建连接 2002-can‘t connect to server on ....

    环境: 系统:centos7 生产环境:docker 中部署MySQL 报错提示符:"2002-Can't connect to server on '192.168.200.22'(100 ...

  7. 设置 Git 用户名和邮箱

    安装完 Git 之后,要做的第一件事就是设置你的用户名和邮件地址.因为每一个提交都会使用这些信息,如果你不完善它们,在 GitHub 远程仓库里很有可能没有你的贡献统计. 以下操作需要你打开 Git ...

  8. springBoot项目实现发送邮件功能

    需要的依赖: <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  9. docker可视化

    可视化第一种方式 Portainer(不是最佳选择但先用这个) docker run -d -p 8088:9000 \ #docker run 启动:通过内网9000端口,外网8088端口:rest ...

  10. 手写tomcat——编写一个echo http服务器

    核心代码如下: public class DiyTomcat1 { public void run() throws IOException { ServerSocket serverSocket = ...