• 背景介绍

    Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从参数变化范围出发, 以Batch Normalization技术为例, 简要演示Batch Normalization批归一化对Neural Network模型复杂度的影响.

  • 算法特征

    ①. 重整批特征之均值与方差; ②. 以批特征均值与方差之凸组合估计整体特征均值与方差

  • 算法推导

    以批数据集\(X_B = \{x^{(1)}, x^{(2)}, \cdots, x^{(n)}\}\)为例, 重整前均值与标准偏差分别如下

    \[\begin{align*}
    \mu_B &= \frac{1}{n}\sum_i x^{(i)} \\
    \sigma_B &= \sqrt{\frac{1}{n}\sum_i (x^{(i)} - \mu_B)^2 + \epsilon}
    \end{align*}
    \]

    其中, \(\epsilon\)代表足够小正数, 确保标准偏差非零.

    对此批数据集进行如下重整,

    \[x_{\mathrm{new}}^{(i)} = \sigma_{B, \mathrm{new}}\frac{x^{(i)} - \mu_B}{\sigma_B} + \mu_{B, \mathrm{new}}
    \]

    其中, \(\mu_{B,\mathrm{new}}\)与\(\sigma_{B, \mathrm{new}}\)为待优化参数, 分别代表批数据集重整后均值与标准偏差. 以此手段构建线性层, 重置了数据特征之分布范围, 调整了模型复杂度.

    在训练过程中, 采用如下凸组合估计整体特征重整前均值与标准偏差,

    \[\begin{align*}
    \mu &= \lambda\mu + (1 - \lambda)\mu_{B} \\
    \sigma &= \lambda\sigma + (1-\lambda)\sigma_{B}
    \end{align*}
    \]

    其中, \(\lambda\)代表权重参数. 在测试过程中, 此\(\mu\)与\(\sigma\)用于替代\(\mu_B\)与\(\sigma_B\).

  • 数据、模型与损失函数

    此处采用与Neural Network模型复杂度之Dropout - Python实现相同的数据、模型与损失函数, 并在隐藏层取激活函数tanh之前引入Batch Normalization层.

  • 代码实现

    本文拟将中间隐藏层节点数设置为300, 使模型具备较高复杂度. 通过添加Batch Normalization层与否, 观察Batch Normalization对模型收敛的影响.

    code
    import numpy
    import torch
    from torch import nn
    from torch import optim
    from torch.utils import data
    from matplotlib import pyplot as plt numpy.random.seed(0)
    torch.random.manual_seed(0) # 获取数据与封装数据
    def xFunc(r, g, b):
    x = r + 2 * g + 3 * b
    return x def yFunc(r, g, b):
    y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
    return y def lvFunc(r, g, b):
    lv = -3 * r - 4 * g - 5 * b
    return lv class GeneDataset(data.Dataset): def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1], num=100,\
    transform=None, target_transform=None):
    self.__rRange = rRange
    self.__gRange = gRange
    self.__bRange = bRange
    self.__num = num
    self.__transform = transform
    self.__target_transform = target_transform self.__X = self.__build_X()
    self.__Y_ = self.__build_Y_() def __build_X(self):
    rArr = numpy.random.uniform(*self.__rRange, (self.__num, 1))
    gArr = numpy.random.uniform(*self.__gRange, (self.__num, 1))
    bArr = numpy.random.uniform(*self.__bRange, (self.__num, 1))
    X = numpy.hstack((rArr, gArr, bArr))
    return X def __build_Y_(self):
    rArr = self.__X[:, 0:1]
    gArr = self.__X[:, 1:2]
    bArr = self.__X[:, 2:3]
    xArr = xFunc(rArr, gArr, bArr)
    yArr = yFunc(rArr, gArr, bArr)
    lvArr = lvFunc(rArr, gArr, bArr)
    Y_ = numpy.hstack((xArr, yArr, lvArr))
    return Y_ def __len__(self):
    return self.__num def __getitem__(self, idx):
    x = self.__X[idx]
    y_ = self.__Y_[idx]
    if self.__transform:
    x = self.__transform(x)
    if self.__target_transform:
    y_ = self.__target_transform(y_)
    return x, y_ # 构建模型
    class Linear(nn.Module): def __init__(self, in_features, out_features, bias=True):
    super(Linear, self).__init__() self.__in_features = in_features
    self.__out_features = out_features
    self.__bias = bias self.weight = nn.Parameter(torch.randn((in_features, out_features), dtype=torch.float64))
    self.bias = nn.Parameter(torch.randn((out_features,), dtype=torch.float64)) def forward(self, X):
    X = torch.matmul(X, self.weight)
    if self.__bias:
    X += self.bias
    return X class Tanh(nn.Module): def __init__(self):
    super(Tanh, self).__init__() def forward(self, X):
    X = torch.tanh(X)
    return X class BatchNorm(nn.Module): def __init__(self, num_features, lamda=0.9, epsilon=1.e-6):
    super(BatchNorm, self).__init__() self.__num_features = num_features
    self.__lamda = lamda
    self.__epsilon = epsilon
    self.training = True self.__mu_new = nn.parameter.Parameter(torch.zeros((num_features,)))
    self.__sigma_new = nn.parameter.Parameter(torch.ones((num_features,)))
    self.__mu = torch.zeros((num_features,))
    self.__sigma = torch.ones((num_features,)) def forward(self, X):
    if self.training:
    mu_B = torch.mean(X, axis=0)
    sigma_B = torch.sqrt(torch.var(X, axis=0) + self.__epsilon)
    X = (X - mu_B) / sigma_B
    X = X * self.__sigma_new + self.__mu_new self.__mu = self.__lamda * self.__mu + (1 - self.__lamda) * mu_B.data
    self.__sigma = self.__lamda * self.__sigma + (1 - self.__lamda) * sigma_B.data
    return X
    else:
    X = (X - self.__mu) / self.__sigma
    X = X * self.__sigma_new + self.__mu_new
    return X class MLP(nn.Module): def __init__(self, hidden_features=50, is_batch_norm=True):
    super(MLP, self).__init__() self.__hidden_features = hidden_features
    self.__is_batch_norm = is_batch_norm
    self.__in_features = 3
    self.__out_features = 3 self.lin1 = Linear(self.__in_features, self.__hidden_features)
    if self.__is_batch_norm:
    self.bn1 = BatchNorm(self.__hidden_features)
    self.tanh = Tanh()
    self.lin2 = Linear(self.__hidden_features, self.__out_features) def forward(self, X):
    X = self.lin1(X)
    if self.__is_batch_norm:
    X = self.bn1(X)
    X = self.tanh(X)
    X = self.lin2(X)
    return X # 构建损失函数
    class MSE(nn.Module): def forward(self, Y, Y_):
    loss = torch.sum((Y - Y_) ** 2)
    return loss # 训练单元与测试单元
    def train_epoch(trainLoader, model, loss_fn, optimizer):
    model.train(True) loss = 0
    with torch.enable_grad():
    for X, Y_ in trainLoader:
    optimizer.zero_grad() Y = model(X)
    lossVal = loss_fn(Y, Y_)
    lossVal.backward()
    optimizer.step() loss += lossVal.item()
    loss /= len(trainLoader.dataset)
    return loss def test_epoch(testLoader, model, loss_fn):
    model.train(False) loss = 0
    with torch.no_grad():
    for X, Y_ in testLoader:
    Y = model(X)
    lossVal = loss_fn(Y, Y_)
    loss += lossVal.item()
    loss /= len(testLoader.dataset)
    return loss # 进行训练与测试
    class BatchNormShow(object): def __init__(self, trainLoader, testLoader):
    self.__trainLoader = trainLoader
    self.__testLoader = testLoader def train(self, epochs=100):
    torch.random.manual_seed(0)
    model_BN = MLP(300, True)
    loss_BN = MSE()
    optimizer_BN = optim.Adam(model_BN.parameters(), 0.001) torch.random.manual_seed(0)
    model_NoBN = MLP(300, False)
    loss_NoBN = MSE()
    optimizer_NoBN = optim.Adam(model_NoBN.parameters(), 0.001) trainLoss_BN, testLoss_BN = self.__train_model(self.__trainLoader, self.__testLoader, \
    model_BN, loss_BN, optimizer_BN, epochs)
    trainLoss_NoBN, testLoss_NoBN = self.__train_model(self.__trainLoader, self.__testLoader, \
    model_NoBN, loss_NoBN, optimizer_NoBN, epochs) fig = plt.figure(figsize=(5, 4))
    ax1 = fig.add_subplot()
    ax1.plot(range(epochs), trainLoss_BN, "r-", lw=1, label="train with BN")
    ax1.plot(range(epochs), testLoss_BN, "r--", lw=1, label="test with BN")
    ax1.plot(range(epochs), trainLoss_NoBN, "b-", lw=1, label="train without BN")
    ax1.plot(range(epochs), testLoss_NoBN, "b--", lw=1, label="test without BN")
    ax1.legend()
    ax1.set(xlabel="epoch", ylabel="loss", yscale="log")
    fig.tight_layout()
    fig.savefig("batch_norm.png", dpi=100)
    plt.show() def __train_model(self, trainLoader, testLoader, model, loss_fn, optimizer, epochs):
    trainLossList = list()
    testLossList = list() for epoch in range(epochs):
    trainLoss = train_epoch(trainLoader, model, loss_fn, optimizer)
    testLoss = test_epoch(testLoader, model, loss_fn)
    trainLossList.append(trainLoss)
    testLossList.append(testLoss)
    print(epoch, trainLoss, testLoss)
    return trainLossList, testLossList if __name__ == "__main__":
    trainData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=1000, \
    transform=torch.tensor, target_transform=torch.tensor)
    testData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=300, \
    transform=torch.tensor, target_transform=torch.tensor)
    trainLoader = data.DataLoader(trainData, batch_size=len(trainData), shuffle=False)
    testLoader = data.DataLoader(testData, batch_size=len(testData), shuffle=False)
    bnsObj = BatchNormShow(trainLoader, testLoader)
    epochs = 10000
    bnsObj.train(epochs)
  • 结果展示

    可以看到, Batch Normalization使得模型具备更快的收敛速度, 不过对最终收敛值影响不大, 即在上述重整手段下模型复杂度变化不大.

  • 使用建议

    ①. Batch Normalization改变了特征分布, 具备调整模型复杂度的能力;

    ②. Batch Normalization使特征分布在原点附近, 不容易出现梯度消失或梯度爆炸;

    ③. Batch Normalization适用于神经网络全连接层与卷积层.

  • 参考文档

    ①. 动手学深度学习 - 李牧

Neural Network模型复杂度之Batch Normalization - Python实现的更多相关文章

  1. 吴恩达深度学习笔记(十二)—— Batch Normalization

        主要内容: 一.Normalizing activations in a network 二.Fitting Batch Norm in a neural network 三.Why does ...

  2. Batch Normalization详解

    目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Norma ...

  3. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

  4. [C2W3] Improving Deep Neural Networks : Hyperparameter tuning, Batch Normalization and Programming Frameworks

    第三周:Hyperparameter tuning, Batch Normalization and Programming Frameworks 调试处理(Tuning process) 目前为止, ...

  5. 图像分类(二)GoogLenet Inception_v2:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

    Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3* ...

  6. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

  7. Batch normalization:accelerating deep network training by reducing internal covariate shift的笔记

    说实话,这篇paper看了很久,,到现在对里面的一些东西还不是很好的理解. 下面是我的理解,当同行看到的话,留言交流交流啊!!!!! 这篇文章的中心点:围绕着如何降低  internal covari ...

  8. Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015

    这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...

  9. 论文笔记:Person Re-identification with Deep Similarity-Guided Graph Neural Network

    Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: ...

  10. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

随机推荐

  1. 生成式AI对业务流程有哪些影响?企业如何应用生成式AI?一文看懂

    集成与融合类ChatGPT工具与技术,以生成式AI变革业务流程 ChatGPT背后的生成式AI,聊聊生成式AI如何改变业务流程 ChatGPT月活用户过亿,生成式AI对组织的业务流程有哪些影响? 生成 ...

  2. SQLSERVER 临时表和表变量到底有什么区别?

    一:背景 1. 讲故事 今天和大家聊一套面试中经常被问到的高频题,对,就是 临时表 和 表变量 这俩玩意,如果有朋友在面试中回答的不好,可以尝试看下这篇能不能帮你成功迈过. 二:到底有什么区别 1. ...

  3. spark数据清洗

    spark数据清洗 1.Scala常用语法 运用maven创建项目,需要导入如下依赖: <dependency> <groupId>org.apache.spark</g ...

  4. PostgreSQL TOAST技术解析

    一.TOAST是什么? TOAST是"The Oversized-Attribute Storage Technique"(超尺寸字段存储技术)的缩写,主要用于存储一个大字段的值. ...

  5. linux kali 换源细节

    1.打开命令行输入sudo vim /etc/apt/sources.list,并输入密码(也许你进入终端是空白的,也是没有问题的.).这里我们用root身份进去.不然后期会报错. (E45: 're ...

  6. c# RegistryKey 的相关简单操作(转)

    c# RegistryKey 的相关简单操作   以下从'读''写''删除''判断'四个事例实现对注册表的简单操作 1.读取指定名称的注册表的值 private string GetRegistDat ...

  7. uniapp 返回上一页事件监听

    需求 点击订单页---订单详情页----点击修改地址---来到地址列表,修改地址--- 成功以后返回订单详情页,并且更新界面数据 首先在订单详情页   设置事件  监听另一界面触发事件后  就会执行并 ...

  8. iOS开发 性能优化

    1.快 2.稳 3.省 4.小

  9. Java面向对象之创建对象内存分析

    创建对象内存分析 代码 内存分析 属性 属性:字段Field 成员变量 默认初始化: 1.数字: 0 0.0 2.char: u0000 3.boolean:false 4.引用数据类型:null 5 ...

  10. 2022-05-10内部群每日三题-清辉PMP

    1.项目经理管理的一个项目不断面临挑战.发起人经常无法做出决定,存在大量预算超支,团队成员不断从项目离职,高级管理层没有提供实际的支持.项目经理应该怎么做? A.与团队一起开会,以确定造成这些问题的原 ...