摘要:本文中我们介绍的 AnimeGAN 就是 GitHub 上一款爆火的二次元漫画风格迁移工具,可以实现快速的动画风格迁移。

本文分享自华为云社区《AnimeGANv2 照片动漫化:如何基于 PyTorch 和神经网络给 GirlFriend 制作漫画风头像?【秋招特训】》,作者:白鹿第一帅 。

前言

将现实世界场景的照片转换为动漫风格图像的方法,这是计算机视觉和艺术风格转换中一项有意义且具有挑战性的任务,而本文中我们介绍的 AnimeGAN 就是 GitHub 上一款爆火的二次元漫画风格迁移工具,可以实现快速的动画风格迁移。该工具是基于神经风格迁移和生成对抗网络 (GAN) 技术打造的,相比于传统的神经网络模型,GAN 是一种全新的非监督式的架构。最近 AnimeGAN 发布了其二代版本,据称更新后 AnimeGANv2 支持了风景照片和风景视频的三种动漫化风格(分别是宫崎骏、新海诚和金敏),视觉效果更佳,模型体量也更小且容易训练了。

一、基于 GAN 实现漫画风格实现原理

1.1、传统漫画风格迁移工具的不足

  • 生成的图像没有明显的动画风格纹理。
  • 生成的图像丢失了原始图像的内容。
  • 网络的参数需要大的存储容量。

1.2、基于生成对抗网络 (GAN) 的漫画风格迁移工具

通过三种新颖的损失函数,使生成的图像具有更好的动画视觉效果,这些损失函数是灰度样式损失、灰度对抗损失和颜色重建损失。AnimeGAN 可以很容易地使用未配对的训练数据进行端到端训练。

  • AnimeGAN 的参数需要较低的内存容量。实验结果表明,该方法可以快速将真实世界的照片转换为高质量的动漫图像,并且优于最先进的方法。
  • AnimeGAN 的参数需要较低的内存容量。实验结果表明,该方法可以快速将真实世界的照片转换为高质量的动漫图像,并且优于最先进的方法。
  • AnimeGAN 的参数需要较低的内存容量。实验结果表明,该方法可以快速将真实世界的照片转换为高质量的动漫图像,并且优于最先进的方法。

实现原理可以参考原论文:https://link.springer.com/chapter/10.1007/978-981-15-5577-0_18,具体如下图所示:

二、AnimeGANv2 照片动漫化

2.1、与 AnimeGAN 的对比

AnimeGANv2 是照片漫画工具 AnimeGAN 的升级版本,AnimeGANv2 在训练 AI 时 GAN 包括了两套独立的网络 A 和 B,A 网络是需要训练的分类器,用来分辨成图是否符合标准;B 网络是生成器,生成类似于真实样本的随机样本,并将其作为假样本以欺骗网络 A。在 A 和 B 的对抗中,AI 的水平逐渐提升,最后实现质的飞跃,相较于之前版本,AnimeGANv2 主要在以下四个方面进行优化:

  • 解决生成图片的高频伪影问题。
  • 易于训练,达到实物纸张效果。
  • 减少生成器网络参数。
  • 尽可能用高质量的图片样式数据。

2.2、AnimeGANv2 效果及项目介绍

AnimeGANv2 可以将现实场景的图片处理为动漫画风,目前支持宫崎骏、新海诚和今敏的三种风格,三者实现效果具体如下图所示:

Github 地址https://github.com/TachibanaYoshino/AnimeGANv2,详情具体如下图所示:

三、本次案例部署及实验平台介绍

3.1、对象存储服务 OBS

我们将本次案例中的相关代码和数据存放于华为云提供的对象存储服务 OBS 中,推荐大家使用:https://www.huaweicloud.com/product/obs.html,产品详细信息具体如下图所示:

对象存储服务(Object Storage Service,OBS)提供海量、安全、高可靠、低成本的数据存储能力,可供用户存储任意类型和大小的数据。适合企业备份 / 归档、视频点播、视频监控等多种数据存储场景,在我本人的使用以及测试中对象存储服务 OBS 效果颇好,故推荐给大家使用,具体如下图所示:

3.2、AI 开发平台 ModelArts

本次案例运行的实验平台为华为云的 AI 开发平台 ModelArts,详细信息请点击:https://support.huaweicloud.com/modelarts/index.html,产品详细信息具体如下图所示:

ModelArts 是面向开发者的一站式 AI 开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式 Training、自动化模型生成,及端 - 边 - 云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期 AI 工作流,在我本人的使用以及测试中 ModelArts 效果颇好且提供了可以满足不同开发需求的运行环境(部分免费),故推荐给大家使用,具体如下图所示:

可以在华为云 AI 开发平台 ModelArts 提供的 JupyterLab 中选择不同的实验环境内核,具体如下图所示:

四、获取代码和数据

获取代码和数据,相关实现命令如下所示:

import os
!wget https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/AnimeGAN/AnimeGAN.zip
os.system('unzip AnimeGAN.zip')

我们可以在华为云 AI 开发平台 ModelArts 提供的 JupyterLab 查看具体运行过程和结果,具体如下图所示:

五、安装依赖库

安装依赖库,相关实现命令如下所示:

!pip install  dlib
!pip uninstall -y torch
!pip uninstall -y torchvision
!pip install torch
!pip install torchvision
%cd AnimeGANv2

我们可以在华为云 AI 开发平台 ModelArts 提供的 JupyterLab 查看具体运行过程和结果,具体如下图所示:

说明:由于运行结果过于冗长,仅截取首端与末端运行结果。

六、AnimeGANv2 源码解析

## AnimeGANv2源码解析
import os
import dlib
import collections
from typing import Union, List
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
def get_dlib_face_detector(predictor_path: str = "shape_predictor_68_face_landmarks.dat"):
if not os.path.isfile(predictor_path):
model_file = "shape_predictor_68_face_landmarks.dat.bz2"
os.system(f"wget http://dlib.net/files/{model_file}")
os.system(f"bzip2 -dk {model_file}")
detector = dlib.get_frontal_face_detector()
shape_predictor = dlib.shape_predictor(predictor_path)
def detect_face_landmarks(img: Union[Image.Image, np.ndarray]):
if isinstance(img, Image.Image):
img = np.array(img)
faces = []
dets = detector(img)
for d in dets:
shape = shape_predictor(img, d)
faces.append(np.array([[v.x, v.y] for v in shape.parts()]))
return faces
return detect_face_landmarks
def display_facial_landmarks(
img: Image,
landmarks: List[np.ndarray],
fig_size=[15, 15]
):
plot_style = dict(
marker='o',
markersize=4,
linestyle='-',
lw=2
)
pred_type = collections.namedtuple('prediction_type', ['slice', 'color'])
pred_types = {
'face': pred_type(slice(0, 17), (0.682, 0.780, 0.909, 0.5)),
'eyebrow1': pred_type(slice(17, 22), (1.0, 0.498, 0.055, 0.4)),
'eyebrow2': pred_type(slice(22, 27), (1.0, 0.498, 0.055, 0.4)),
'nose': pred_type(slice(27, 31), (0.345, 0.239, 0.443, 0.4)),
'nostril': pred_type(slice(31, 36), (0.345, 0.239, 0.443, 0.4)),
'eye1': pred_type(slice(36, 42), (0.596, 0.875, 0.541, 0.3)),
'eye2': pred_type(slice(42, 48), (0.596, 0.875, 0.541, 0.3)),
'lips': pred_type(slice(48, 60), (0.596, 0.875, 0.541, 0.3)),
'teeth': pred_type(slice(60, 68), (0.596, 0.875, 0.541, 0.4))
}
fig = plt.figure(figsize=fig_size)
ax = fig.add_subplot(1, 1, 1)
ax.imshow(img)
ax.axis('off')
for face in landmarks:
for pred_type in pred_types.values():
ax.plot(
face[pred_type.slice, 0],
face[pred_type.slice, 1],
color=pred_type.color, **plot_style
)
plt.show()
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
import PIL.Image
import PIL.ImageFile
import numpy as np
import scipy.ndimage
def align_and_crop_face(
img: Image.Image,
landmarks: np.ndarray,
expand: float = 1.0,
output_size: int = 1024,
transform_size: int = 4096,
enable_padding: bool = True,
):
# 将五官数据转为数组
# pylint: disable=unused-variable
lm = landmarks
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
# 计算辅助向量
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# 提取矩形框
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # flipud函数实现矩阵的上下翻转;数组乘法,每行对应位置相乘
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= expand
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# 缩放
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# 裁剪
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# 填充数据
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# 转化图片
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
return img
#@title AnimeGAN model from https://github.com/bryandlee/animegan2-pytorch
# ! git clone https://github.com/bryandlee/animegan2-pytorch
model_fname = "face_paint_512_v2_0.pt"
# model_urls = {
# "face_paint_512_v0.pt": "https://drive.google.com/uc?id=1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-",
# "face_paint_512_v2_0.pt": "https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU",
# }
# ! gdown {model_urls[model_fname]}
import sys
sys.path.append("animegan2-pytorch")
import torch
torch.set_grad_enabled(False)
print(torch.__version__, torch.cuda.is_available())
from model import Generator
device = "cpu"
model = Generator().eval().to(device)
model.load_state_dict(torch.load(model_fname))
from PIL import Image
from torchvision.transforms.functional import to_tensor, to_pil_image
def face2paint(
img: Image.Image,
size: int,
side_by_side: bool = True,
) -> Image.Image:
w, h = img.size
s = min(w, h)
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
img = img.resize((size, size), Image.LANCZOS)
input = to_tensor(img).unsqueeze(0) * 2 - 1
output = model(input.to(device)).cpu()[0]
if side_by_side:
output = torch.cat([input[0], output], dim=2)
output = (output * 0.5 + 0.5).clip(0, 1)
return to_pil_image(output)

对应运行结果具体如下:

1.11.0+cu102 True

七、素材应用照片动漫化

7.1、通过文件路径获取素材文件

定义一个应用函数,通过文件路径获取素材文件,具体实现代码如下:

def inference_from_file(filepath):
img = Image.open(filepath).convert("RGB")
face_detector = get_dlib_face_detector()
landmarks = face_detector(img)
display_facial_landmarks(img, landmarks, fig_size=[5, 5])
for landmark in landmarks:
face = align_and_crop_face(img, landmark, expand=1.3)
display(face2paint(face, 512))

我们分别对命名为 “4.jpg” 和 “1.jpg” 的素材照片应用漫画化效果,具体实现代码如下:

inference_from_file('1.jpg')
inference_from_file('4.jpg')

对于命名为 “1.jpg” 的图片分析过程具体如下图所示:

输出结果,我们着重在脸部与原图 “1.jpg” 进行对比,具体如下图所示:

对于命名为 “4.jpg” 的图片分析过程具体如下图所示:

输出结果,我们着重在脸部与原图 “4.jpg” 进行对比,具体如下图所示:

7.2、通过 URL 地址获取素材文件

定义一个应用函数,通过 URL 地址获取素材文件,具体实现代码如下:

import requests
def inference_from_url(url):
img = Image.open(requests.get(url, stream=True).raw).convert("RGB")
face_detector = get_dlib_face_detector()
landmarks = face_detector(img)
display_facial_landmarks(img, landmarks, fig_size=[5, 5])
for landmark in landmarks:
face = align_and_crop_face(img, landmark, expand=1.3)
display(face2paint(face, 512))

我们通过获取 URL 地址中的素材照片 “6.jpg” 实现,具体实现代码如下:

inference_from_url("https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/AnimeGAN/6.jpg")

对于命名为 “6.jpg” 的图片分析过程具体如下图所示:

输出结果,我们着重在脸部与原图 “6.jpg” 进行对比,具体如下图所示:

八、在线体验

当然也考虑到一些同学因为某些原因无法进行实验环境操作,在这里为大家提供线上 AnimeGANv2 照片动漫化,感兴趣的同学请点击:https://huggingface.co/spaces/akhaliq/AnimeGANv2,在这里呢就有一些局限性,目前仅支持两个 version:

  • version 1 ( stylization, robustness)
  • version 2 ( robustness, stylization)

玩一玩,还是够用的!嘿嘿嘿!马斯克?!

不说了,我要去给女朋友整一个!你们看着办,该不会是没有女朋友吧?!

总结

在本文中我们给大家介绍了基于神经风格迁移和生成对抗网络 (GAN) 技术打造的照片漫画风格迁移工具 AnimeGANv2,并通过华为云平台提供的 AI 开发平台 ModelArts 进行了效果演示,其中对于 AnimeGANv2 源码部分以及通过文件路径获取素材文件和通过 URL 地址获取素材文件两种不同的应用方式进行了重点拆分,这是一种设计模式的体现。通过技术手段在计算机视觉和艺术风格转换方面的应用,实现照片的快速动漫化效果,对于作者来说是一种挑战,那对于我们其他用户来说呢?新领域新机遇?

点击关注,第一时间了解华为云新鲜技术~

基于 PyTorch 和神经网络给 GirlFriend 制作漫画风头像的更多相关文章

  1. 使用PyTorch构建神经网络以及反向传播计算

    使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在 ...

  2. 基于pytorch实现HighWay Networks之Highway Networks详解

    (一)简述---承接上文---基于pytorch实现HighWay Networks之Train Deep Networks 上文已经介绍过Highway Netwotrks提出的目的就是解决深层神经 ...

  3. 目标检测-基于Pytorch实现Yolov3(1)- 搭建模型

    原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快 ...

  4. 基于Pytorch的简单小案例

    神经网络的理论知识不是本文讨论的重点,假设读者们都是已经了解RNN的基本概念,并希望能用一些框架做一些简单的实现.这里推荐神经网络必读书目:邱锡鹏<神经网络与深度学习>.本文基于Pytor ...

  5. 实践torch.fx第一篇——基于Pytorch的模型优化量化神器

    第一篇--什么是torch.fx 今天聊一下比较重要的torch.fx,也趁着这次机会把之前的torch.fx笔记整理下,笔记大概拆成三份,分别对应三篇: 什么是torch.fx 基于torch.fx ...

  6. 基于busybox的Linux小系统制作 (initrd)

    我们有时候有需要在busybox基础上,制作linux,可是却不知道具体怎么做,这里将对基于busybox的linux小系统制作做出详细的步骤说明.准备环境:1.一个Redhat完整系统的虚拟机,本次 ...

  7. 基于双向BiLstm神经网络的中文分词详解及源码

    基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码 ...

  8. 基于pytorch的电影推荐系统

    本文介绍一个基于pytorch的电影推荐系统. 代码移植自https://github.com/chengstone/movie_recommender. 原作者用了tf1.0实现了这个基于movie ...

  9. CIKM 18 | 蚂蚁金服论文:基于异构图神经网络的恶意账户识别方法

    小蚂蚁说: ACM CIKM 2018 全称是 The 27th ACM International Conference on Information and Knowledge Managemen ...

随机推荐

  1. 使用.NetCore自带的后台作业,出入队简单模拟生产者消费者处理请求响应的数据

    环境:Core:3.1的项目 说明:由于该方案为个人测试项目,重启时队列中的部分数据很可能会丢失, 对数据有要求的该方案不适用,不能照搬需要持久化处理, 另外发布到Linux Docker中通常不会自 ...

  2. 【黑马pink老师的H5/CSS课程】(一)基本介绍

    视频P4~P6 黑马程序员pink老师前端入门教程,零基础必看的h5(html5)+css3+移动 1.网页 1.1 什么是网页 网站是网页的集合,网页是构成网站的基本元素,常用html格式文件 1. ...

  3. 【Python】和【Jupyter notebook】的正确安装方式?

    学了那么久Python,你的Python安装方式正确吗?今天给你看看什么才是Python正确的安装方式,教程放在下面了,喜欢的记得点赞. Python安装 Python解答Q群:660193417## ...

  4. Java:如何打印整个字符串数组?

    例: public static void main(String[] args) { String prodName = "雇员姓名,雇员唯一号"; String[] prodN ...

  5. vim插件pathogen的Helptags不起作用

    如果你安装了中文vim帮助,并且在其中添加了自己的帮助文件,并且当你使用了pathogen的时候. 会发现Helptags不起作用. 原因是Helptags的实现没有考虑到中文的情况 解决办法如下: ...

  6. HTTPS 如何保证数据传输安全

    引言 为什么把这个作为选题. 大概也是2年前,我的同事,在面试某宇宙大厂遇到的问题与我一起探讨.这个时候我发现,虽然TLS(https)这个东西大部分时候可能不会被直接用到,但很容易被作为考察的目标范 ...

  7. 华为云Stack南向开放框架,帮助生态伙伴高效入云

    摘要:CloudBonder的生态社区通过一系列生态项目,解决提交叉组合.架构分层不清晰.运维界面不清晰等问题,简化对接流程,降低生态伙伴对接成本,缩短对接时间. 本文分享自华为云社区<[华为云 ...

  8. API 开发者需要避免的10个错误【翻译】

    随着低代码和无代码工具的出现,构建API比以往任何时候都更简单.更快.不过因为开发简单了,开发者很容易忽略一些潜在的问题,导致整个业务的下游影响. 在设计阶段多花点时间,可以确保API真正有用.安全. ...

  9. Tomcat服务部署及配置

    Tomcat服务部署 1.环境准备 systemctl stop firewalld setenforce 0 2.安装jdk cd /opt 将jdk和tomcat软件包拖入当前目录下进行解压 rp ...

  10. Keyboading 思路

    0x01 前置芝士 还是先放个 link 吧. 所需知识点:BFS. 思维难度较高,实现简单. 0x02 题目大意:其实就是给你个图,按顺序走到相应的点,求所需最少步数(走到需要去的点会耗费一次步数) ...