Go语言核心36讲30
你好,我是郝林,今天我继续分享条件变量sync.Cond的内容。我们紧接着上一篇的内容进行知识扩展。
问题 1:条件变量的Wait
方法做了什么?
在了解了条件变量的使用方式之后,你可能会有这么几个疑问。
- 为什么先要锁定条件变量基于的互斥锁,才能调用它的
Wait
方法? - 为什么要用
for
语句来包裹调用其Wait
方法的表达式,用if
语句不行吗?
这些问题我在面试的时候也经常问。你需要对这个Wait
方法的内部机制有所了解才能回答上来。
条件变量的Wait
方法主要做了四件事。
- 把调用它的goroutine(也就是当前的goroutine)加入到当前条件变量的通知队列中。
- 解锁当前的条件变量基于的那个互斥锁。
- 让当前的goroutine处于等待状态,等到通知到来时再决定是否唤醒它。此时,这个goroutine就会阻塞在调用这个
Wait
方法的那行代码上。 - 如果通知到来并且决定唤醒这个goroutine,那么就在唤醒它之后重新锁定当前条件变量基于的互斥锁。自此之后,当前的goroutine就会继续执行后面的代码了。
你现在知道我刚刚说的第一个疑问的答案了吗?
因为条件变量的Wait
方法在阻塞当前的goroutine之前,会解锁它基于的互斥锁,所以在调用该Wait
方法之前,我们必须先锁定那个互斥锁,否则在调用这个Wait
方法时,就会引发一个不可恢复的panic。
为什么条件变量的Wait
方法要这么做呢?你可以想象一下,如果Wait
方法在互斥锁已经锁定的情况下,阻塞了当前的goroutine,那么又由谁来解锁呢?别的goroutine吗?
先不说这违背了互斥锁的重要使用原则,即:成对的锁定和解锁,就算别的goroutine可以来解锁,那万一解锁重复了怎么办?由此引发的panic可是无法恢复的。
如果当前的goroutine无法解锁,别的goroutine也都不来解锁,那么又由谁来进入临界区,并改变共享资源的状态呢?只要共享资源的状态不变,即使当前的goroutine因收到通知而被唤醒,也依然会再次执行这个Wait
方法,并再次被阻塞。
所以说,如果条件变量的Wait
方法不先解锁互斥锁的话,那么就只会造成两种后果:不是当前的程序因panic而崩溃,就是相关的goroutine全面阻塞。
再解释第二个疑问。很显然,if
语句只会对共享资源的状态检查一次,而for
语句却可以做多次检查,直到这个状态改变为止。那为什么要做多次检查呢?
这主要是为了保险起见。如果一个goroutine因收到通知而被唤醒,但却发现共享资源的状态,依然不符合它的要求,那么就应该再次调用条件变量的Wait
方法,并继续等待下次通知的到来。
这种情况是很有可能发生的,具体如下面所示。
有多个goroutine在等待共享资源的同一种状态。比如,它们都在等
mailbox
变量的值不为0
的时候再把它的值变为0
,这就相当于有多个人在等着我向信箱里放置情报。虽然等待的goroutine有多个,但每次成功的goroutine却只可能有一个。别忘了,条件变量的Wait
方法会在当前的goroutine醒来后先重新锁定那个互斥锁。在成功的goroutine最终解锁互斥锁之后,其他的goroutine会先后进入临界区,但它们会发现共享资源的状态依然不是它们想要的。这个时候,for
循环就很有必要了。共享资源可能有的状态不是两个,而是更多。比如,
mailbox
变量的可能值不只有0
和1
,还有2
、3
、4
。这种情况下,由于状态在每次改变后的结果只可能有一个,所以,在设计合理的前提下,单一的结果一定不可能满足所有goroutine的条件。那些未被满足的goroutine显然还需要继续等待和检查。有一种可能,共享资源的状态只有两个,并且每种状态都只有一个goroutine在关注,就像我们在主问题当中实现的那个例子那样。不过,即使是这样,使用
for
语句仍然是有必要的。原因是,在一些多CPU核心的计算机系统中,即使没有收到条件变量的通知,调用其Wait
方法的goroutine也是有可能被唤醒的。这是由计算机硬件层面决定的,即使是操作系统(比如Linux)本身提供的条件变量也会如此。
综上所述,在包裹条件变量的Wait
方法的时候,我们总是应该使用for
语句。
好了,到这里,关于条件变量的Wait
方法,我想你知道的应该已经足够多了。
问题 2:条件变量的Signal
方法和Broadcast
方法有哪些异同?
条件变量的Signal
方法和Broadcast
方法都是被用来发送通知的,不同的是,前者的通知只会唤醒一个因此而等待的goroutine,而后者的通知却会唤醒所有为此等待的goroutine。
条件变量的Wait
方法总会把当前的goroutine添加到通知队列的队尾,而它的Signal
方法总会从通知队列的队首开始,查找可被唤醒的goroutine。所以,因Signal
方法的通知,而被唤醒的goroutine一般都是最早等待的那一个。
这两个方法的行为决定了它们的适用场景。如果你确定只有一个goroutine在等待通知,或者只需唤醒任意一个goroutine就可以满足要求,那么使用条件变量的Signal
方法就好了。
否则,使用Broadcast
方法总没错,只要你设置好各个goroutine所期望的共享资源状态就可以了。
此外,再次强调一下,与Wait
方法不同,条件变量的Signal
方法和Broadcast
方法并不需要在互斥锁的保护下执行。恰恰相反,我们最好在解锁条件变量基于的那个互斥锁之后,再去调用它的这两个方法。这更有利于程序的运行效率。
最后,请注意,条件变量的通知具有即时性。也就是说,如果发送通知的时候没有goroutine为此等待,那么该通知就会被直接丢弃。在这之后才开始等待的goroutine只可能被后面的通知唤醒。
你可以打开demo62.go文件,并仔细观察它与demo61.go的不同。尤其是lock
变量的类型,以及发送通知的方式。
总结
我们今天主要讲了条件变量,它是基于互斥锁的一种同步工具。在Go语言中,我们需要用sync.NewCond
函数来初始化一个sync.Cond
类型的条件变量。
sync.NewCond
函数需要一个sync.Locker
类型的参数值。
*sync.Mutex
类型的值以及*sync.RWMutex
类型的值都可以满足这个要求。另外,后者的RLocker
方法可以返回这个值中的读锁,也同样可以作为sync.NewCond
函数的参数值,如此就可以生成与读写锁中的读锁对应的条件变量了。
条件变量的Wait
方法需要在它基于的互斥锁保护下执行,否则就会引发不可恢复的panic。此外,我们最好使用for
语句来检查共享资源的状态,并包裹对条件变量的Wait
方法的调用。
不要用if
语句,因为它不能重复地执行“检查状态-等待通知-被唤醒”的这个流程。重复执行这个流程的原因是,一个“因为等待通知,而被阻塞”的goroutine,可能会在共享资源的状态不满足其要求的情况下被唤醒。
条件变量的Signal
方法只会唤醒一个因等待通知而被阻塞的goroutine,而它的Broadcast
方法却可以唤醒所有为此而等待的goroutine。后者比前者的适应场景要多得多。
这两个方法并不需要受到互斥锁的保护,我们也最好不要在解锁互斥锁之前调用它们。还有,条件变量的通知具有即时性。当通知被发送的时候,如果没有任何goroutine需要被唤醒,那么该通知就会立即失效。
思考题
sync.Cond
类型中的公开字段L
是做什么用的?我们可以在使用条件变量的过程中改变这个字段的值吗?
Go语言核心36讲30的更多相关文章
- Go语言核心36讲(导读)--学习笔记
目录 开篇词 | 跟着学,你也能成为Go语言高手 导读 | 写给0基础入门的Go语言学习者 导读 | 学习专栏的正确姿势 开篇词 | 跟着学,你也能成为Go语言高手 Go 语言是由 Google 出品 ...
- Go语言核心36讲(Go语言进阶技术八)--学习笔记
14 | 接口类型的合理运用 前导内容:正确使用接口的基础知识 在 Go 语言的语境中,当我们在谈论"接口"的时候,一定指的是接口类型.因为接口类型与其他数据类型不同,它是没法被实 ...
- Go语言核心36讲(Go语言进阶技术十六)--学习笔记
22 | panic函数.recover函数以及defer语句(下) 我在前一篇文章提到过这样一个说法,panic 之中可以包含一个值,用于简要解释引发此 panic 的原因. 如果一个 panic ...
- Go语言核心36讲(Go语言实战与应用一)--学习笔记
23 | 测试的基本规则和流程 (上) 在接下来的日子里,我将带你去学习在 Go 语言编程进阶的道路上,必须掌握的附加知识,比如:Go 程序测试.程序监测,以及 Go 语言标准库中各种常用代码包的正确 ...
- Go语言核心36讲(Go语言实战与应用三)--学习笔记
25 | 更多的测试手法 在本篇文章,我会继续为你讲解更多更高级的测试方法.这会涉及testing包中更多的 API.go test命令支持的,更多标记更加复杂的测试结果,以及测试覆盖度分析等等. 前 ...
- Go语言核心36讲(Go语言实战与应用四)--学习笔记
26 | sync.Mutex与sync.RWMutex 从本篇文章开始,我们将一起探讨 Go 语言自带标准库中一些比较核心的代码包.这会涉及这些代码包的标准用法.使用禁忌.背后原理以及周边的知识. ...
- Go语言核心36讲(Go语言实战与应用八)--学习笔记
30 | 原子操作(下) 我们接着上一篇文章的内容继续聊,上一篇我们提到了,sync/atomic包中的函数可以做的原子操作有:加法(add).比较并交换(compare and swap,简称 CA ...
- Go语言核心36讲(Go语言实战与应用十四)--学习笔记
36 | unicode与字符编码 在开始今天的内容之前,我先来做一个简单的总结. Go 语言经典知识总结 在数据类型方面有: 基于底层数组的切片: 用来传递数据的通道: 作为一等类型的函数: 可实现 ...
- Go语言核心36讲(Go语言实战与应用十八)--学习笔记
40 | io包中的接口和工具 (上) 我们在前几篇文章中,主要讨论了strings.Builder.strings.Reader和bytes.Buffer这三个数据类型. 知识回顾 还记得吗?当时我 ...
- Go语言核心36讲(Go语言实战与应用二十二)--学习笔记
44 | 使用os包中的API (上) 我们今天要讲的是os代码包中的 API.这个代码包可以让我们拥有操控计算机操作系统的能力. 前导内容:os 包中的 API 这个代码包提供的都是平台不相关的 A ...
随机推荐
- 第五十四篇:网络通信Axios
好家伙,补充知识 1.什么是Axios? Axios可以在浏览器中发送 XMLHttpRequests Axios 是一个基于 promise 的 HTTP 库,简单的讲就是可以发送get.post请 ...
- 第二章 Kubernetes快速入门
一.四组基本概念 Pod/Pod控制器: Name/Namespace: Label/Label选择器: Service/Ingress. 二.Pod/Pod控制器 2.1 Pod Pod是K8S里能 ...
- QT学习(三)
首先整理一下编码的方法.对于一个待解决的问题,首先应该将大问题分解成小问题,将小问题划分为小小问题... 然后再进行类的抽象,将划分成的问题和类进行对应.然后再对划分的小..问题进行具体的处理分析,划 ...
- Typora破解下载
Typora破解下载 文章指路
- LibTorch 多项分布
最近在学习过程中需要对服从某种分布的离散型随机变量进行抽样,在LibTroch中查到了torch::multinomial(多项分布),该方法的接口如下: at::Tensor multinomial ...
- 在安装Windows时手动创建分区
目前硬件都已经支持UEFI模式启动了,而且硬盘容量普遍大于MBR磁盘能支持的最大2TB的容量.所以在安装Windows系统的时候优先选用UEFI启用,并将磁盘配置为GPT模式以支持更大的容量.而且Wi ...
- AQS:Java 中悲观锁的底层实现机制
介绍 AQS AQS(AbstractQueuedSynchronizer)是 Java 并发包中,实现各种同步组件的基础.比如 各种锁:ReentrantLock.ReadWriteLock.Sta ...
- Redis基本数据结构ZipList
为什么要有ziplist 有两点原因: 普通的双向链表,会有两个指针,在存储数据很小的情况下,我们存储的实际数据的大小可能还没有指针占用的内存大,是不是有点得不偿失?而且Redis是基于内存的,而且是 ...
- mvn clean package 、mvn clean install、mvn clean deploy的区别与联系
使用的时候首选:mvn clean package mvn clean package依次执行了clean.resources.compile.testResources.testCompile.te ...
- python csv写入多列
import csv import os def main(): current_dir = os.path.abspath('.') file_name = os.path.join(current ...