The pattern language is organized into four design spaces.  Generally one starts at the top in the Finding Concurrency design space and works down through the other design spaces in order until a detailed design for a parallel program is obtained.

Click on a design space name in the figure or list for more details.

Finding Concurrency

This design space is concerned with structuring the problem to expose exploitable concurrency. The designer working at this level focuses on high-level algorithmic issues and reasons about the problem to expose potential concurrency.

Introduction to Finding Concurrency

Task Decomposition

Data Decomposition

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Algorithm Structure  

This design space is concerned with structuring the algorithm to take advantage of potential concurrency. That is, the designer working at this level reasons about how to use the concurrency exposed in working with the Finding Concurrency patterns. The Algorithm Structure patterns describe overall strategies for exploiting concurrency.

Introduction to Algorithm Structure

Task Parallelism

Divide and Conquer

Geometric Decomposition

Recursive Data

Pipeline

Event-Based Coordination

Supporting Structures

This design space represents an intermediate stage between the Algorithm Structure  and Implementation Mechanisms design spaces. Two important groups of patterns in this space are those that represent program-structuring approaches and those that represent commonly used shared data structures.

Introduction to Supporting Structures

SPMD

Master/Worker

Loop Parallelism

Fork/Join

Shared Data

Shared Queue

Distributed Array

Other supporting structures

Implementation Mechanisms

The Implementation Mechanisms design space is concerned with how the patterns of the higher-level spaces are mapped into particular programming environments. We use it to provide descriptions of common mechanisms for process/thread management and interaction. The items in this design space are not presented as patterns since in many cases they map directly onto elements within particular parallel programming environments. We include them in our pattern language anyway, however, to provide a complete path from problem description to code.

Introduction to Implementation Mechanisms

UE Management

Thread Creation/Destruction

Process Creation/Destruction

Synchronization

Memory Synchronization and Fences

Barriers

Mutual Exclusion

Communication

MPI: Message Passing

OpenMP: Message Passing

Java: Message Passing

Collective Communication

Other Communication Constructs

Before starting to work with the patterns in this design space, the algorithm designer must first consider the problem to be solved and make sure the effort to create a parallel program will be justified: Is the problem sufficiently large, and the results sufficiently significant, to justify expending effort to solve it faster? If so, the next step is to make sure the key features and data elements within the problem are well understood. Finally, the designer needs to understand which parts of the problem are most computationally intensive, since it is on those parts of the problem that the effort to parallelize the problem should be focused.

Once this analysis is complete, the patterns in the Finding Concurrency  design space can be used to start designing a parallel algorithm. The patterns in this design space can be organized into three groups as shown in the figure.

,

Decomposition Patterns  There are two decomposition patterns. These patterns are used to decompose the problem into pieces that can execute concurrently.

Task Decomposition 

How can a problem be decomposed into tasks that can execute concurrently?

Data Decomposition

How can a problem's data be decomposed into units that can be operated on relatively independently?

Dependency Analysis Patterns. This group contains three patterns that help group the tasks and analyze the dependencies among them

Group Tasks 

How can the tasks that make up a problem be grouped to simplify the job of managing dependencies?

Order Tasks

Given a way of decomposing a problem into tasks and a way of collecting these tasks into logically related groups, how must these groups of tasks be ordered to satisfy constraints among tasks?

Data Sharing

Given a data and task decomposition for a problem, how is data shared among the tasks?

Nominally, the patterns are applied in this order. In practice, however, it is often necessary to work back and forth between them, or possibly even revisit the decomposition patterns.

The Design Evaluation  Pattern.

Is the decomposition and dependency analysis so far good enough to move on to the Algorithm Structure design space, or should the design be revisited?

After analyzing the concurrency in a problem, perhaps by using the patterns in the Finding Concurrency design space, the next task is to  refine the design and move it closer to a program that can execute tasks concurrently by mapping the concurrency onto multiple units of execution (UEs) running on a parallel computer.

Of the countless ways to define an algorithm structure, most follow one of six basic design patterns. These patterns make up the Algorithm Structure  design space.  The figure shows the patterns in the designs space and the relationship to the other spaces.

The key issue at this stage is to decide which pattern or patterns are most appropriate for the problem.  In making this decision, various forces such as simplicity, portability, scalability, and efficiency may pull the design in different directions.  The features of the target platform must also be taken into account.

There is usually a major organizing principle implied by the concurrency that helps choose a pattern. This usually falls into one of three categories:

Organization by tasks

Task Parallelism

How can an algorithm be organized around a collection of tasks that can execute concurrently?

Divide and Conquer

Suppose the problem is formulated using the sequential divide and conquer strategy. How can the potential concurrency be exploited?

Organization by data decomposition

Geometric Decomposition 

How can an algorithm be organized around a data structure that has been decomposed into concurrently updateable ``chunks''?

Recursive Data

Suppose the problem involves an operation on a recursive data structure (such as a list, tree, or graph) that appears to require sequential processing. How can operations on these data structures be performed in parallel?

Organization by flow of data

Pipeline 

Suppose that the overall computation involves performing a calculation on many sets of data, where the calculation can be viewed in terms of data flowing through a sequence of stages. How can the potential concurrency be exploited?

Event-based Coordination

Suppose the application can be decomposed into groups of semi-independent tasks interacting in an irregular fashion. The interaction is determined by the flow of data between them which implies ordering constraints between the tasks. How can these tasks and their interaction be implemented so they can execute concurrently?

The most effective parallel algorithm design may make use of multiple algorithm structures (combined hierarchically, compositionally, or in sequence). For example, it often happens that the very top level of the design is a sequential composition of one or more Algorithm Structure patterns. Other designs may be organized hierarchically, with one pattern used to organize the interaction of the major task groups and other patterns used to organize tasks within the groups -- for example, an instance of Pipeline in which individual stages are instances of Task Parallelism.

https://www.cise.ufl.edu/research/ParallelPatterns/overview.htm

A Pattern Language for Parallel Programming的更多相关文章

  1. A Pattern Language for Parallel Application Programming

    A Pattern Language for Parallel Application Programming Berna L. Massingill, Timothy G. Mattson, Bev ...

  2. Introduction to Multi-Threaded, Multi-Core and Parallel Programming concepts

    https://katyscode.wordpress.com/2013/05/17/introduction-to-multi-threaded-multi-core-and-parallel-pr ...

  3. Fork and Join: Java Can Excel at Painless Parallel Programming Too!---转

    原文地址:http://www.oracle.com/technetwork/articles/java/fork-join-422606.html Multicore processors are ...

  4. Notes of Principles of Parallel Programming - TODO

    0.1 TopicNotes of Lin C., Snyder L.. Principles of Parallel Programming. Beijing: China Machine Pres ...

  5. 4.3 Reduction代码(Heterogeneous Parallel Programming class lab)

    首先添加上Heterogeneous Parallel Programming class 中 lab: Reduction的代码: myReduction.c // MP Reduction // ...

  6. Task Cancellation: Parallel Programming

    http://beyondrelational.com/modules/2/blogs/79/posts/11524/task-cancellation-parallel-programming-ii ...

  7. Samples for Parallel Programming with the .NET Framework

    The .NET Framework 4 includes significant advancements for developers writing parallel and concurren ...

  8. Parallel Programming for FPGAs 学习笔记(1)

    Parallel Programming for FPGAs 学习笔记(1)

  9. Parallel Programming AND Asynchronous Programming

    https://blogs.oracle.com/dave/ Java Memory Model...and the pragmatics of itAleksey Shipilevaleksey.s ...

随机推荐

  1. RtlRaiseException(ntdll.dll)函数逆向

    书中内容: 代码逆向: 1. CONTEXT是保存之前的函数(RaiseException)状态 2. 在逆向上一个函数时产生一个疑问:EXCEPTION_RECORD.ExceptionAddres ...

  2. JAVA笔记 -- this关键字

    this关键字 一. 基本作用 在当前方法内部,获得当前对象的引用.在引用中,调用方法不必使用this.method()这样的形式来说明,因为编译器会自动的添加. 必要情况: 为了将对象本身返回 ja ...

  3. python凯撒加密

    在密码学中,恺撒密码是一种最简单且最广为人知的加密技术.它是一种替换加密的技术,明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文.例,当偏移量是3的时候,所有的字母A将 ...

  4. 【转载】Gradle for Android 第三篇( 依赖管理 )

    依赖管理是Gradle最闪耀的地方,最好的情景是,你仅仅只需添加一行代码在你的build文件,Gradle会自动从远程仓库为你下载相关的jar包,并且保证你能够正确使用它们.Gradle甚至可以为你做 ...

  5. 如何使用 CODING 进行瀑布流式研发

    你好,欢迎使用CODING!这份最佳实践将帮助你通过 CODING 更好地实践瀑布流式开发流程. 什么是瀑布流式研发 1970 年温斯顿·罗伊斯(Winston Royce)提出了著名的"瀑 ...

  6. Ubuntu18.04安装Cuda10.1

    注:如果使用anaconda,貌似不需要手动安装Cuda和cudnn,安装tensorflow时会自动安装 1.官方教程https://docs.nvidia.com/cuda/cuda-instal ...

  7. Flask—好的博客

    https://www.cnblogs.com/cwp-bg/p/8892403.html https://www.cnblogs.com/ExMan/p/9825710.html https://w ...

  8. Python数值类型和序列类型

    int.float.bool这三个数值类型和常用序列类型的定义和使用 数值类型的基本计算 序列类型的索引取值.切片.成员运算等序列类型的通用操作 complex(复数).decimal(定点数).ma ...

  9. greenlet实现协程

    #greenlet 1 import time from greenlet import greenlet # greenlet可以实现一个自行调度的微线程 def work1(): while Tr ...

  10. Linux的启动过程的分析

    Linux的启动过程 Linux系统从启动大哦提供服务的基本过程为:首先机器家电,然后通过MBR或者UEFI装载GRUB,再启动内核,再由内核启动服务,最后开始对外服务 CentOS7要经历四个主要阶 ...