【十大经典数据挖掘算法】k-means
【十大经典数据挖掘算法】系列
1. 引言
k-means与kNN虽然都是以k打头,但却是两类算法——kNN为监督学习中的分类算法,而k-means则是非监督学习中的聚类算法;二者相同之处:均利用近邻信息来标注类别。
聚类是数据挖掘中一种非常重要的学习流派,指将未标注的样本数据中相似的分为同一类,正所谓“物以类聚,人以群分”嘛。k-means是聚类算法中最为简单、高效的,核心思想:由用户指定k个初始质心(initial centroids),以作为聚类的类别(cluster),重复迭代直至算法收敛。
2. 基本算法
在k-means算法中,用质心来表示cluster;且容易证明k-means算法收敛等同于所有质心不再发生变化。基本的k-means算法流程如下:
选取k个初始质心(作为初始cluster);
repeat:
对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster;
重新计算k个cluser对应的质心;
until 质心不再发生变化
对于欧式空间的样本数据,以平方误差和(sum of the squared error, SSE)作为聚类的目标函数,同时也可以衡量不同聚类结果好坏的指标:
\]
表示样本点\(x\)到cluster \(C_i\) 的质心 \(c_i\) 距离平方和;最优的聚类结果应使得SSE达到最小值。
下图中给出了一个通过4次迭代聚类3个cluster的例子:
k-means存在缺点:
k-means是局部最优的,容易受到初始质心的影响;比如在下图中,因选择初始质心不恰当而造成次优的聚类结果(SSE较大):
同时,k值的选取也会直接影响聚类结果,最优聚类的k值应与样本数据本身的结构信息相吻合,而这种结构信息是很难去掌握,因此选取最优k值是非常困难的。
3. 优化
为了解决上述存在缺点,在基本k-means的基础上发展而来二分 (bisecting) k-means,其主要思想:一个大cluster进行分裂后可以得到两个小的cluster;为了得到k个cluster,可进行k-1次分裂。算法流程如下:
初始只有一个cluster包含所有样本点;
repeat:
从待分裂的clusters中选择一个进行二元分裂,所选的cluster应使得SSE最小;
until 有k个cluster
上述算法流程中,为从待分裂的clusters中求得局部最优解,可以采取暴力方法:依次对每个待分裂的cluster进行二元分裂(bisect)以求得最优分裂。二分k-means算法聚类过程如图:
从图中,我们观察到:二分k-means算法对初始质心的选择不太敏感,因为初始时只选择一个质心。
4. 参考资料
[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining.
[2] Xindong Wu, Vipin Kumar, The Top Ten Algorithms in Data Mining.
【十大经典数据挖掘算法】k-means的更多相关文章
- 【十大经典数据挖掘算法】k
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 【十大经典数据挖掘算法】Naïve Bayes
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 【十大经典数据挖掘算法】Apriori
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...
- 【十大经典数据挖掘算法】kNN
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...
- 【十大经典数据挖掘算法】CART
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...
- 【十大经典数据挖掘算法】EM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...
随机推荐
- USACO翻译:USACO 2014 FEB SILVER 三题
USACO 2014 FEB SILVER 一.题目概览 中文题目名称 自动打字 路障 神秘代码 英文题目名称 auto rblock scode 可执行文件名 auto rblock scode 输 ...
- [转]runtime 消息机制
原文地址:http://www.jianshu.com/p/f6300eb3ec3d 一.关于runtime 之前在项目中有遇到过用runtime解决改变全局字体的问题,所以再一次感受到了runtim ...
- 学习笔记:Hashtable和HashMap
学了这么些天的基础知识发现自己还是个门外汗,难怪自己一直混的不怎么样.但这样的恶补不知道有没有用,是不是过段时间这些知识又忘了呢?这些知识平时的工作好像都是随拿随用的,也并不是平时一点没有关注过这些基 ...
- 基于 Asp.Net的 Comet 技术解析
Comet技术原理 来自维基百科:Comet是一种用于web的技术,能使服务器能实时地将更新的信息传送到客户端,而无须客户端发出请求,目前有两种实现方式,长轮询和iframe流. 简单的说是一种基于现 ...
- ASP.Net WebForm温故知新学习笔记:二、ViewState与UpdatePanel探秘
开篇:经历了上一篇<aspx与服务器控件探秘>后,我们了解了aspx和服务器控件背后的故事.这篇我们开始走进WebForm状态保持的一大法宝—ViewState,对其刨根究底一下.然后,再 ...
- 初试ASP.NET Web API/MVC API(附Demo)
写在前面 HTTP RESTful 创建Web API 调用Web API 运行截图及Demo下载 ASP.NET Web API是一个框架,可以很容易构建达成了广泛的HTTP服务客户端,包括浏览 ...
- Module-Zero之组织单元(OU)管理【新增】
返回<Module Zero学习目录> 概览介绍 OrganizationUnit实体 OrganizationUnit管理者 公共用例 设置 概览介绍 组织单元(Organization ...
- [Hadoop大数据]——Hive部署入门教程
Hive是为了解决hadoop中mapreduce编写困难,提供给熟悉sql的人使用的.只要你对SQL有一定的了解,就能通过Hive写出mapreduce的程序,而不需要去学习hadoop中的api. ...
- RX(一)
建议,先去了解观察者模式. 前期工作:引入RX的包 build.gradle脚本里面的 dependencies{ compile 'io.reactivex:rxjava:1.1.0'compile ...
- C#学习系列-文章导航
C#学习系列-.NET体系结构 C#学习系列-类与结构的区别 C#学习系列-String与string的区别 C#学习系列-抽象方法与虚拟方法的区别 C#学习系列-out与ref的区别 C#学习系列- ...