【十大经典数据挖掘算法】系列

  1. C4.5
  2. K-Means
  3. SVM
  4. Apriori
  5. EM
  6. PageRank
  7. AdaBoost
  8. kNN
  9. Naïve Bayes
  10. CART

1. 引言

k-means与kNN虽然都是以k打头,但却是两类算法——kNN为监督学习中的分类算法,而k-means则是非监督学习中的聚类算法;二者相同之处:均利用近邻信息来标注类别。

聚类是数据挖掘中一种非常重要的学习流派,指将未标注的样本数据中相似的分为同一类,正所谓“物以类聚,人以群分”嘛。k-means是聚类算法中最为简单、高效的,核心思想:由用户指定k个初始质心(initial centroids),以作为聚类的类别(cluster),重复迭代直至算法收敛。

2. 基本算法

在k-means算法中,用质心来表示cluster;且容易证明k-means算法收敛等同于所有质心不再发生变化。基本的k-means算法流程如下:

选取k个初始质心(作为初始cluster);
repeat:
对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster;
重新计算k个cluser对应的质心;
until 质心不再发生变化

对于欧式空间的样本数据,以平方误差和(sum of the squared error, SSE)作为聚类的目标函数,同时也可以衡量不同聚类结果好坏的指标:

\[SSE=\sum\limits_{i=1}^{k} \sum_{x\in C_{i}} dist(x, c_i)
\]

表示样本点\(x\)到cluster \(C_i\) 的质心 \(c_i\) 距离平方和;最优的聚类结果应使得SSE达到最小值。

下图中给出了一个通过4次迭代聚类3个cluster的例子:

k-means存在缺点:

  • k-means是局部最优的,容易受到初始质心的影响;比如在下图中,因选择初始质心不恰当而造成次优的聚类结果(SSE较大):

  • 同时,k值的选取也会直接影响聚类结果,最优聚类的k值应与样本数据本身的结构信息相吻合,而这种结构信息是很难去掌握,因此选取最优k值是非常困难的。

3. 优化

为了解决上述存在缺点,在基本k-means的基础上发展而来二分 (bisecting) k-means,其主要思想:一个大cluster进行分裂后可以得到两个小的cluster;为了得到k个cluster,可进行k-1次分裂。算法流程如下:

初始只有一个cluster包含所有样本点;
repeat:
从待分裂的clusters中选择一个进行二元分裂,所选的cluster应使得SSE最小;
until 有k个cluster

上述算法流程中,为从待分裂的clusters中求得局部最优解,可以采取暴力方法:依次对每个待分裂的cluster进行二元分裂(bisect)以求得最优分裂。二分k-means算法聚类过程如图:

从图中,我们观察到:二分k-means算法对初始质心的选择不太敏感,因为初始时只选择一个质心。

4. 参考资料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining.

[2] Xindong Wu, Vipin Kumar, The Top Ten Algorithms in Data Mining.

【十大经典数据挖掘算法】k-means的更多相关文章

  1. 【十大经典数据挖掘算法】k

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  2. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  3. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  4. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  5. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  6. 【十大经典数据挖掘算法】Apriori

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...

  7. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  8. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

  9. 【十大经典数据挖掘算法】EM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...

随机推荐

  1. WPF整理-跨程序集访问资源

    “Sometimes binary resources are defined in one assembly (typically a class library), but areneeded i ...

  2. canvas绘制坐标轴

    效果图如下, var canvas = document.getElementById("canvas"), context = canvas.getContext("2 ...

  3. CQOI 2016 k远点对

    题目大意:n个点,求第k远的点对的距离 KD树裸题 注意要用堆维护第k远 #include<bits/stdc++.h> #define ll unsigned long long #de ...

  4. sql SYS对象集合

    select * from SYS.objects select * from SYS.all_objects select * from SYS.tables select * from SYS.c ...

  5. C语言中的栈和堆

    原文出处<http://blog.csdn.net/xiayufeng520/article/details/45956305#t0> 栈内存由编译器分配和释放,堆内存由程序分配和释放. ...

  6. 循序渐进做项目系列(3):迷你QQ篇(1)——实现客户端互相聊天

    <循序渐进做项目系列迷你QQ篇>将陆续介绍客户端聊天,文件传输,加好友,群聊,包括语音聊天,视频聊天,远程桌面等等需求如何实现,感兴趣的朋友可以持续关注.考虑到某些需求较为复杂,本系列采用 ...

  7. 清晰易懂TCP通信原理解析(附demo、简易TCP通信库源码、解决沾包问题等)C#版

    目录 说明 TCP与UDP通信的特点 TCP中的沾包现象 自定义应用层协议 TCPLibrary通信库介绍 Demo演示 未完成功能 源码下载 说明 我前面博客中有多篇文章讲到了.NET中的网络编程, ...

  8. The Hacker's Guide To Python 单元测试

    The Hacker's Guide To Python 单元测试 基本方式 python中提供了非常简单的单元测试方式,利用nose包中的nosetests命令可以实现简单的批量测试. 安装nose ...

  9. 无法启用插件,因为它引起了一个致命错误(fatal error)。

    关于wordpress不能启用某插件引发的错误,php 中 出错,Cannot redeclare wpb_getImageBySize().这个问题也是在我wordpress版本从v4.1生成v4. ...

  10. 浅谈linux 下,利用Nginx服务器代理实现ajax跨域请求。

    ajax跨域请求对于前端开发者几乎在任何一个项目中都会用到,众所周知,跨域请求有三种方式: jsonp; XHR2 代理: jsonp: 这种应该是开发中是使用的最多的,最常见的跨域请求方法,其实aj ...