Focal Loss tensorflow 实现
def focal_loss(pred, y, alpha=0.25, gamma=2):
r"""Compute focal loss for predictions.
Multi-labels Focal loss formula:
FL = -alpha * (z-p)^gamma * log(p) -(1-alpha) * p^gamma * log(1-p)
,which alpha = 0.25, gamma = 2, p = sigmoid(x), z = target_tensor.
Args:
pred: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
y: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
alpha: A scalar tensor for focal loss alpha hyper-parameter
gamma: A scalar tensor for focal loss gamma hyper-parameter
Returns:
loss: A (scalar) tensor representing the value of the loss function
"""
zeros = tf.zeros_like(pred, dtype=pred.dtype) # For positive prediction, only need consider front part loss, back part is 0;
# target_tensor > zeros <=> z=1, so positive coefficient = z - p.
pos_p_sub = tf.where(y > zeros, y - pred, zeros) # positive sample 寻找正样本,并进行填充 # For negative prediction, only need consider back part loss, front part is 0;
# target_tensor > zeros <=> z=1, so negative coefficient = 0.
neg_p_sub = tf.where(y > zeros, zeros, pred) # negative sample 寻找负样本,并进行填充
per_entry_cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(pred, 1e-8, 1.0)) \
- (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - pred, 1e-8, 1.0)) return tf.reduce_sum(per_entry_cross_ent)
Focal Loss tensorflow 实现的更多相关文章
- 论文阅读笔记四十四:RetinaNet:Focal Loss for Dense Object Detection(ICCV2017)
论文原址:https://arxiv.org/abs/1708.02002 github代码:https://github.com/fizyr/keras-retinanet 摘要 目前,具有较高准确 ...
- Focal Loss理解
1. 总述 Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题.该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘. 2. 损失函数形式 ...
- Focal Loss
为了有效地同时解决样本类别不均衡和苦难样本的问题,何凯明和RGB以二分类交叉熵为例提出了一种新的Loss----Focal loss 原始的二分类交叉熵形式如下: Focal Loss形式如下: 上式 ...
- 深度学习笔记(八)Focal Loss
论文:Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002 一. 提出背景 object detect ...
- Focal Loss(RetinaNet) 与 OHEM
Focal Loss for Dense Object Detection-RetinaNet YOLO和SSD可以算one-stage算法里的佼佼者,加上R-CNN系列算法,这几种算法可以说是目标检 ...
- Focal Loss笔记
论文:<Focal Loss for Dense Object Detection> Focal Loss 是何恺明设计的为了解决one-stage目标检测在训练阶段前景类和背景类极度不均 ...
- Focal Loss for Dense Object Detection 论文阅读
何凯明大佬 ICCV 2017 best student paper 作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确 ...
- Focal Loss 的前向与后向公式推导
把Focal Loss的前向和后向进行数学化描述.本文的公式可能数学公式比较多.本文尽量采用分解的方式一步一步的推倒.达到能易懂的目的. Focal Loss 前向计算 其中 是输入的数据 是输入的标 ...
- focal loss和ohem
公式推导:https://github.com/zimenglan-sysu-512/paper-note/blob/master/focal_loss.pdf 使用的代码:https://githu ...
随机推荐
- GPU跑tf-faster-rcnn demo以及训练自己的数据
https://blog.csdn.net/qq_39123369/article/details/85245512
- Disruptor系列(三)— 组件原理
前言 前两篇文章都是从github wiki中翻译而来,旨在能够快速了解和上手使用Disruptor.但是为了能够掌握该技术的核心思想,停留在使用层面还远远不够,需要了解其设计思想,实现原理,故这篇从 ...
- python基础(24):面向对象三大特性一(继承)
1. 继承 1.1 什么是继承 继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类,父类又可称为基类或超类,新建的类称为派生类或子类. python中类的继承分为:单继承和多继 ...
- java基础(14):Eclipse、面向对象、自定义数据类型的使用
1. Eclipse的应用 1. 常用快捷操作 Ctrl+T:查看所选中类的继承树 例如,在下面代码中,选中Teacher类名,然后按Ctrl+T,就会显示出Teacher类的继承关系 //员工 ab ...
- 顺F分享,你是在裸奔吗?
" 对顺F旗下各APP顺藤摸瓜分析--顺F分享." 前文对顺F速运和顺F速运国际版进行了分析,二者使用同一套接口,虽然保护强度不高,但对代码和数据的保护却区别对待,实在让人诧异. ...
- Flask—好的博客
https://www.cnblogs.com/cwp-bg/p/8892403.html https://www.cnblogs.com/ExMan/p/9825710.html https://w ...
- Plugin org.apache.maven.plugins:maven-resources-plugin:2.6
创建maven project时工程报错Plugin org.apache.maven.plugins:maven-resources-plugin:2.6 or one of its depende ...
- easyui三
陈旧的开发模式 美工(ui工程师:出一个项目模型) java工程师:将原有的html转成jsp,动态展示数据 缺点: 客户需要调节前端的展示效果 解决:由美工去重新排版,重新选色.Vs前后端分离 美工 ...
- 13.Java基础_数组内存图
单个数组内存图 new int[3]: 在堆内存里申请一块空间存储int类型的变量(初始化时值都为0) int[] array: 在栈内存申请一块内存存储堆内存里数组的首地址 array[i]: 通过 ...
- Sqlserver 2014 下载
ed2k://|file|cn_sql_server_2014_enterprise_edition_x64_dvd_3932882.iso|2898847744|A33CE10CD989083D1A ...