Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (eg, system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning的更多相关文章
- 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...
- 【论文笔记】A review of applications in federated learning(综述)
A review of applications in federated learning Authors Li Li, Yuxi Fan, Mike Tse, Kuo-Yi Lin Keyword ...
- Advances and Open Problems in Federated Learning
挖个大坑,等有空了再回来填.心心念念的大综述呀(吐血三升)! 郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 项目地址:https://github.com/open-intellige ...
- 【论文笔记】A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond(综述)
A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Bey ...
- Federated Learning: Challenges, Methods, and Future Directions
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...
- 联邦学习(Federated Learning)
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...
- 联邦学习 Federated Learning 相关资料整理
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...
- Overcoming Forgetting in Federated Learning on Non-IID Data
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. NeurIPS 2019 Workshop on Federated Learning ...
- Reliable Federated Learning for Mobile Networks
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...
随机推荐
- 创建基于OData的Web API - Knowledge Builder API, Part III:Write Model
在前两篇文章<Part I: Business Scenario> 和<Part II: Project Setup>后,可以开始真正Model的创建. 步骤如下: 1. 创建 ...
- 设计模式(Java语言)- 简单工厂模式
简单工厂模式有称为静态工厂模式,属于设计模式中的创建型模式.简单工厂模式通过对外提供一个静态方法来统一为类创建实例.简单工厂模式的目的是实现类与类之间解耦,其次是客户端不需要知道这个对象是如何被穿创建 ...
- nyoj 822-画图 (*)
822-画图 内存限制:64MB 时间限制:1000ms 特判: No 通过数:133 提交数:187 难度:0 题目描述: 计算机画图也挺有趣的哈!那我们就来用计算机画幅图吧... 输入描述: 输入 ...
- nyoj 101-两点距离 (数学)
101-两点距离 内存限制:64MB 时间限制:3000ms 特判: No 通过数:27 提交数:74 难度:1 题目描述: 输入两点坐标(X1,Y1),(X2,Y2)(0<=x1,x2,y1, ...
- 在校生如何面向面试地学习Java
最近我在博客园里,看到不少在校的同学在学java,而且,在我最近举办的一次直播活动中,也有不少在校生同学来提问,java该怎么学. 对于那些已经工作的同学,哪怕才工作不久,毕竟也能从项目实践里总结和探 ...
- ZeroC ICE的远程调用框架 ASM与defaultServant,ServantLocator
ASM与defaultServant,ServantLocator都是与调用调度(Dispatch)相关的. ASM是ServantManager中的一张二维表_servantMapMap,默认Ser ...
- Java内存模型与volatile关键字
Java内存模型与volatile关键字 一).并发程序开发 并行程序的开发要涉及多线程.多任务间的协作和数据共享问题. 常用的并发控制:内部锁.重入锁.读写锁.信号量. 二).线程的特点 线程的特点 ...
- 排错:golang运行http服务器直接挂掉无错误提示
一运行就退出一运行就退出,没有报错提示检查代码也没有问题. 代码也没问题,原来是端口被占用了,改成8888就正常了
- 【Stream—6】BufferedStream相关知识分享
一.简单介绍以下BufferedStream 在前几章的讲述中,我们已经能够掌握流的基本特性和特点,一般进行对流的处理时,系统肩负着IO所带来的开销,调用十分频繁,这时候就应该想个办法减少这种开销,而 ...
- 在Raspberry Pi上创建容器
树莓派Raspbian默认是支持LXC容器的,下面我们介绍一下在树莓派上创建并运行容器的过程. 1. 安装LXC相关的package $ sudo apt-get install -y git lxc ...