B-概率论-贝叶斯决策
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/
贝叶斯决策
一、贝叶斯决策理论
贝叶斯决策理论:在不完全情报下,对部分未知的状态用主观概率估计。
二、贝叶斯公式
2.1 从条件概率公式推导贝叶斯公式
若果\(A\)和\(B\)相互独立,则有\(p(A,B) = p(A)p(B)\),并有条件概率公式
\[
p(A|B) = {\frac{p(A,B)}{p(B)}} \\
p(B|A) = {\frac{p(A,B)}{p(A)}} \\
\]
通过条件概率可得
\[
p(A,B) = p(B|A)p(A) \\
p(A|B) = {\frac{p(B|A)p(A)}{p(B)}} \quad \text{简写的贝叶斯公式}
\]
\(p(A|B)\):后验概率,B发生的情况下发生A的概率,需要计算的概率
\(p(B|A)\):似然度,A假设条件成立的情况发生B的概率
\(p(A)\):A的先验概率,也可以理解成一般情况下A发生的概率
\(p(B)\):标准化常量,也可以理解成一般情况下B发生的概率
2.2 从全概率公式推导贝叶斯公式
全概率公式
\[
p(B) = \sum_{i=1}^n{p(B|A=A_i)p(A_i)} \quad \text{其中}\sum_{i=1}^n{p(A_i)=1}
\]
通过全概率公式可得
\[
p(A|B) = {\frac{p(B|A)p(A)}{\sum_{i=1}^n{p(B|A=A_i)p(A_i)}}} \quad \text{完整的贝叶斯公式}
\]
三、贝叶斯公式应用
在数字通信中,由于随机干扰,因此接受的信号与发出的信号可能不同,为了确定发出的信号,通常需要计算各种概率。
如果发报机以0.6和0.4的概率发出信号0和1;
当发出信号0时,以0.7和0.2的概率收到信号0和1;
当发出信号1时,接收机以0.8和0.2收到信号1和0。
计算当接受机收到信号0时,发报机发出信号0的概率。
通过上述给出的数据可以得到以下推导
\(p(A_0) = 0.6\):发报机发出信号0的概率
\(p(A_1) = 0.4\):发报机发出信号1的概率
\(p(B)=p(A_0)p(B|A_0) + p(A_1)p(B|A_1)\):发报机接收到信号0的概率
\(p(B|A_0) = 0.7\):发报机发出信号0接收到信号0的概率
\(p(B|A_1) = 0.2\):发报机发出信号1接收到信号0的概率
\[
\begin{align}
p(A_0|B) & = {\frac{p(B|A_0)p(A_0)}{p(A_0)p(B|A_0) + p(A_1)p(B|A_1)}} \\
& ={\frac{0.6*0.7}{0.6*0.7 + 0.4*0.2}} \\
& ={\frac{0.42}{0.50}} \\
& =0.84
\end{align}
\]
B-概率论-贝叶斯决策的更多相关文章
- 期权定价公式:BS公式推导——从高数和概率论角度
嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.
- 概率论与数理统计图解.tex
\documentclass[UTF8,a1paper,landscape]{ctexart} \usepackage{tikz} \usepackage{amsmath} \usepackage{a ...
- 贝叶斯决策_bayes(新闻分类)
1.简单例子引入 2.先验概率 3.后验概率 4.最小错误率决策 5.最小风险贝叶斯决策 1. 贝叶斯公式 2简单例子 正常情况下,我们可以快速的将街上的人分成男和女两类.这里街上的人就是我们观测到的 ...
- 《统计推断(Statistical Inference)》读书笔记——第1章 概率论
第一章介绍了基本的概率论知识,以下是这一章的思维导图
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
- FZU2132 - LQX的作业(概率论)
Problem Description LQX在做作业时遇到一个难题不会做,请你帮她计算一下:在N个独立地分布于0和1之间的随机变量排为非递减顺序之后,这些变量中第M个小于等于x的概率是多少? Inp ...
- hdu5035:概率论推公式
题目大意: 你要去邮局发一个包裹,有n个窗口,每个都有人,每一个窗口完成一次服务的时间 ti 的分布符合几何分布:ki*e^(-ki*t) 每个窗口当前服务已经进行了ci时间 你会去第一个完成当前服务 ...
- ZOJ 3696 Alien's Organ 概率论 泊松分布
看了好久的题,但还是看得一脸蒙圈,感觉完全无从下手,我的队友告诉我可能是正太分布之类的,但我感觉不太像,后来才听同学说是泊松分布,才恍然大悟,概率论刚刚学过这里不久,不禁感叹,学会了还要会用啊... ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- 【概率论与数理统计】小结3 - 一维离散型随机变量及其Python实现
注:上一小节对随机变量做了一个概述,这一节主要记录一维离散型随机变量以及关于它们的一些性质.对于概率论与数理统计方面的计算及可视化,主要的Python包有scipy, numpy和matplotlib ...
随机推荐
- 【Offer】[34] 【二叉树中和为某一值的路径】
题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径.从树的根节点开始往下一直到叶节点所经过的节点形成一条路径.  ...
- Python 的整数与 Numpy 的数据溢出
某位 A 同学发了我一张截图,问为何结果中出现了负数? 看了图,我第一感觉就是数据溢出了.数据超出能表示的最大值,就会出现奇奇怪怪的结果. 然后,他继续发了张图,内容是 print(100000*20 ...
- JDBC进行批处理Batch
在实际的项目开发中,有时候需要向数据库发送一批SQL语句执行,这时应避免向数据库一条条的发送执行,而应采用JDBC的批处理机制,以提升执行效率. JDBC实现批处理有两种方式:statement和pr ...
- sql 删除完全表中完全重复的数据保留一条
1.删除完全重复数据 原始数据: 期望数据: delete result from (select ROW_NUMBER () over(partition by id order by id) r, ...
- 14个Linux系统安全小妙招,总有一招用的上!
对于互联网IT从业人员来说,越来越多的工作会逐渐转移到Linux系统之上,这一点,无论是开发.运维.测试都应该是深有体会.曾有技术调查网站W3Techs于2018年11月就发布一个调查报告,报告显示L ...
- guava multimap介绍
引用一篇别人的博客,理解理解 http://vipcowrie.iteye.com/blog/1517338
- Linux服务器CPU性能模式
环境: Red Hat Enterprise Linux 4 Red Hat Enterprise Linux 5 Red Hat Enterprise Linux 6 Red Hat Enterpr ...
- Net基础篇_学习笔记_第十一天_面向对象(面向过程与面向对象的区别/类的概念)
1.面向过程-----> 面向对象 面向过程:面向的是完成这件事儿的过程,强调的是完成这件事儿的动作. 把大象塞进冰箱里1.打开冰箱门2.把大象塞进去,亲下大象的屁股3.关闭冰箱门 孙全 瘦小 ...
- 50 (OC)* URL Scheme 网页地址协议
在Xcode 9 下,新建的工程,在plist文件中注册URL Schemes,从safari无法打开问题 1:URL Scheme是什么 2:URL Scheme有什么作用 3:URL Scheme ...
- 想研究BERT模型?先看看这篇文章吧!
最近,笔者想研究BERT模型,然而发现想弄懂BERT模型,还得先了解Transformer. 本文尽量贴合Transformer的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进 ...