B-概率论-贝叶斯决策
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/
贝叶斯决策
一、贝叶斯决策理论
贝叶斯决策理论:在不完全情报下,对部分未知的状态用主观概率估计。
二、贝叶斯公式
2.1 从条件概率公式推导贝叶斯公式
若果\(A\)和\(B\)相互独立,则有\(p(A,B) = p(A)p(B)\),并有条件概率公式
\[
p(A|B) = {\frac{p(A,B)}{p(B)}} \\
p(B|A) = {\frac{p(A,B)}{p(A)}} \\
\]
通过条件概率可得
\[
p(A,B) = p(B|A)p(A) \\
p(A|B) = {\frac{p(B|A)p(A)}{p(B)}} \quad \text{简写的贝叶斯公式}
\]
\(p(A|B)\):后验概率,B发生的情况下发生A的概率,需要计算的概率
\(p(B|A)\):似然度,A假设条件成立的情况发生B的概率
\(p(A)\):A的先验概率,也可以理解成一般情况下A发生的概率
\(p(B)\):标准化常量,也可以理解成一般情况下B发生的概率
2.2 从全概率公式推导贝叶斯公式
全概率公式
\[
p(B) = \sum_{i=1}^n{p(B|A=A_i)p(A_i)} \quad \text{其中}\sum_{i=1}^n{p(A_i)=1}
\]
通过全概率公式可得
\[
p(A|B) = {\frac{p(B|A)p(A)}{\sum_{i=1}^n{p(B|A=A_i)p(A_i)}}} \quad \text{完整的贝叶斯公式}
\]
三、贝叶斯公式应用
在数字通信中,由于随机干扰,因此接受的信号与发出的信号可能不同,为了确定发出的信号,通常需要计算各种概率。
如果发报机以0.6和0.4的概率发出信号0和1;
当发出信号0时,以0.7和0.2的概率收到信号0和1;
当发出信号1时,接收机以0.8和0.2收到信号1和0。
计算当接受机收到信号0时,发报机发出信号0的概率。
通过上述给出的数据可以得到以下推导
\(p(A_0) = 0.6\):发报机发出信号0的概率
\(p(A_1) = 0.4\):发报机发出信号1的概率
\(p(B)=p(A_0)p(B|A_0) + p(A_1)p(B|A_1)\):发报机接收到信号0的概率
\(p(B|A_0) = 0.7\):发报机发出信号0接收到信号0的概率
\(p(B|A_1) = 0.2\):发报机发出信号1接收到信号0的概率
\[
\begin{align}
p(A_0|B) & = {\frac{p(B|A_0)p(A_0)}{p(A_0)p(B|A_0) + p(A_1)p(B|A_1)}} \\
& ={\frac{0.6*0.7}{0.6*0.7 + 0.4*0.2}} \\
& ={\frac{0.42}{0.50}} \\
& =0.84
\end{align}
\]
B-概率论-贝叶斯决策的更多相关文章
- 期权定价公式:BS公式推导——从高数和概率论角度
嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.
- 概率论与数理统计图解.tex
\documentclass[UTF8,a1paper,landscape]{ctexart} \usepackage{tikz} \usepackage{amsmath} \usepackage{a ...
- 贝叶斯决策_bayes(新闻分类)
1.简单例子引入 2.先验概率 3.后验概率 4.最小错误率决策 5.最小风险贝叶斯决策 1. 贝叶斯公式 2简单例子 正常情况下,我们可以快速的将街上的人分成男和女两类.这里街上的人就是我们观测到的 ...
- 《统计推断(Statistical Inference)》读书笔记——第1章 概率论
第一章介绍了基本的概率论知识,以下是这一章的思维导图
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
- FZU2132 - LQX的作业(概率论)
Problem Description LQX在做作业时遇到一个难题不会做,请你帮她计算一下:在N个独立地分布于0和1之间的随机变量排为非递减顺序之后,这些变量中第M个小于等于x的概率是多少? Inp ...
- hdu5035:概率论推公式
题目大意: 你要去邮局发一个包裹,有n个窗口,每个都有人,每一个窗口完成一次服务的时间 ti 的分布符合几何分布:ki*e^(-ki*t) 每个窗口当前服务已经进行了ci时间 你会去第一个完成当前服务 ...
- ZOJ 3696 Alien's Organ 概率论 泊松分布
看了好久的题,但还是看得一脸蒙圈,感觉完全无从下手,我的队友告诉我可能是正太分布之类的,但我感觉不太像,后来才听同学说是泊松分布,才恍然大悟,概率论刚刚学过这里不久,不禁感叹,学会了还要会用啊... ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- 【概率论与数理统计】小结3 - 一维离散型随机变量及其Python实现
注:上一小节对随机变量做了一个概述,这一节主要记录一维离散型随机变量以及关于它们的一些性质.对于概率论与数理统计方面的计算及可视化,主要的Python包有scipy, numpy和matplotlib ...
随机推荐
- spring MVC的流程
spring MVC的工作流程
- vue基础技术点列表(一)
一. vue编写需要注意的细节1.vue初始化实例时使用首字母大写,在添加全局配置时也要首字母大写(如添加组件Vue.component("",{template:"&q ...
- ConcurrentHashMap 的工作原理及代码实现
ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主干是个Segment数组.Segment继承了ReentrantLock,所 ...
- Mybatis系列(四)注解
Mybatis系列(四)注解 1.pom.xlm: <?xml version="1.0" encoding="UTF-8"?> <proje ...
- FreeSql (十九)多表查询
多表查询,常用的有联表 LeftJoin/InnerJoin/RightJoin ,这三个方法在上篇文章已经介绍过. 除了联表,还有子查询 Where Exists,和 Select 子表: IFre ...
- jquery插件之poshytip
Poshy Tip 是一个强大的jQuery 工具提示插件,拥有不同的外观.作为 Form Tooltips使用时,可以自定义气泡出现的位置. 导入插件: <script type=" ...
- 世界地图展开图,来自 Simon's World Map
Simon's World Map 软件下载地址:https://www.dit-dit-dit.com/Blog/PostId/42/simons-world-map
- RocksDB线程局部缓存
概述 在开发过程中,我们经常会遇到并发问题,解决并发问题通常的方法是加锁保护,比如常用的spinlock,mutex或者rwlock,当然也可以采用无锁编程,对实现要求就比较高了.对于任何一个共享变量 ...
- [VB.NET Tips]Try...Catch...End Try的另一种用法
有时在调用一个方法时,会进行异常处理.但是当方法内部出现错误时,无法快速定位到是哪一行代码有问题. 下面介绍一下Try的另一个用法: Try...Catch ex As Exception When ...
- APP自动化测试的环境配置
什么是Appium? 第三方自动化框架(工具),扩充了selenium webdriver 协议,在原有的基础上添加了移动端测试API selenium webdriver 指定了客户端到服务端的协议 ...