图像处理

图像变换就是找到一个函数,把原始图像矩阵经过函数处理后,转换为目标图像矩阵.  

可以分为两种方式,即像素级别的变换和区域级别的变换

  • Point operators (pixel transforms)
  • Neighborhood (area-based) operators

像素级别的变换就相当于\(p_{after}(i,j) = f(p_{before}(i,j))\),即变换后的每个像素值都与变换前的同位置的像素值有个函数映射关系.

对比度和亮度改变

线性变换

最常用的是线性变换.即\(g(i,j) = \alpha \cdot f(i,j) + \beta\)

f(i,j)是原像素值,g(i,j)是变换后的像素值.

\(\alpha\)调整对比度,\(\beta\)调整亮度.有时也称之为gain和bias参数.

对比度是什么?不就是"亮和暗的区别"吗?也就是像素值的大小的区别.那我乘以一个alpha系数,当alpha很大的时候就是放大了这种亮度值的差异,也就是提高了对比度,当alpha很小时,也就是缩小了亮度的差异,也就是缩小了对比度.

beta就更好理解了,直接在像素的亮度值上加上一个数,正数就是提高亮度,负数降低亮度.

看一下下面代码的示例:

from __future__ import print_function
from builtins import input
import cv2 as cv
import numpy as np
import argparse
# Read image given by user
parser = argparse.ArgumentParser(description='Code for Changing the contrast and brightness of an image! tutorial.')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
image = cv.imread(cv.samples.findFile(args.input))
if image is None:
print('Could not open or find the image: ', args.input)
exit(0)
new_image = np.zeros(image.shape, image.dtype)
alpha = 1.0 # Simple contrast control
beta = 0 # Simple brightness control
# Initialize values
print(' Basic Linear Transforms ')
print('-------------------------')
try:
alpha = float(input('* Enter the alpha value [1.0-3.0]: '))
beta = int(input('* Enter the beta value [0-100]: '))
except ValueError:
print('Error, not a number')
# Do the operation new_image(i,j) = alpha*image(i,j) + beta
# Instead of these 'for' loops we could have used simply:
# new_image = cv.convertScaleAbs(image, alpha=alpha, beta=beta)
# but we wanted to show you how to access the pixels :)
for y in range(image.shape[0]):
for x in range(image.shape[1]):
for c in range(image.shape[2]):
new_image[y,x,c] = np.clip(alpha*image[y,x,c] + beta, 0, 255)
cv.imshow('Original Image', image)
cv.imshow('New Image', new_image)
# Wait until user press some key
cv.waitKey()

提示module 'cv2' has no attribute 'samples'的话要先安装pip install opencv-python==4.0.0.21.

执行:python change_brightness_contrast.py --input ./lights.jpeg

上图是alpha=2,beta=20的一个效果图.

非线性变换

线性变换有个问题,如上图,α=1.3 and β=40,提高原图亮度的同时,导致云几乎看不见了.如果要看见云的话,建筑的亮度又不够.

这个时候就引入了非线性变换. 称之为Gamma correction

\(O = \left( \frac{I}{255} \right)^{\gamma} \times 255\)

与线性变换不同,对不同的原始亮度值,其改变强度是不同的,是非线性的.



在 γ<1的时候,会提高图片亮度.>1时,降低亮度.

γ=0.4的变换效果图如上.可以看到云层及建筑变亮的同时还保持了对比度让图像依然清晰.



如果查看不同变换下的灰度直方图的话可以看到.中间是原图的灰度直方图,可以看到低亮度值的像素点很多.

左边是做了线性变换的,整体直方图产生了右移,并且在255处出现峰值.因为每个像素点都增加了亮度嘛.导致了白云和蓝天过于明亮无法区分.

而右边做了gamma校正的图像亮度分布比较均匀,即使得低亮度值的部分得以加强,又不至于过度曝光使得白云无法区分.

实现Gamma correction的代码如下.

    lookUpTable = np.empty((1,256), np.uint8)
for i in range(256):
lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255)
res = cv.LUT(img_original, lookUpTable)

其中cv.LUT就是个变换函数.从lookUpTable里找到变换关系,生成新的图像矩阵.https://docs.opencv.org/master/d2/de8/group__core__array.html#gab55b8d062b7f5587720ede032d34156f

参考:https://docs.opencv.org/master/d3/dc1/tutorial_basic_linear_transform.html

opencv调整图像亮度对比度的更多相关文章

  1. opencv::调整图像亮度与对比度

    图像变换可以看作如下: - 像素变换 – 点操作 - 邻域操作 – 区域 调整图像亮度和对比度属于像素变换-点操作 //创建一张跟原图像大小和类型一致的空白图像.像素值初始化为0 Mat new_im ...

  2. 跟我一起学opencv 第五课之调整图像亮度和对比度

    一.调整图像亮度与对比度 1.图像变换 ---像素变换-点操作 ---邻域操作-区域操作 调整图像亮度和对比度属于像素变换-点操作 公式为:g(i,j) = αf(i,j) + β 其中α>0 ...

  3. 【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整

    今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对 ...

  4. openCV - 5~7 图像混合、调整图像亮度与对比度、绘制形状与文字

    5. 图像混合 理论-线性混合操作.相关API(addWeighted) 理论-线性混合操作 用到的公式 (其中 α 的取值范围为0~1之间) 相关API(addWeighted) 参数1:输入图像M ...

  5. Opencv改变图像亮度和对比度以及优化

    https://blog.csdn.net/u013139259/article/details/52145377 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.cs ...

  6. opencv 彩色图像亮度、对比度调节 直方图均衡化

    直接上代码: #include <Windows.h> #include <iostream>// for stand I/O #include <string> ...

  7. 转载:Opencv调整运行窗口图片的大小

    本文来自:http://blog.csdn.net/cumtml/article/details/52807961 Opencv在运算时显示图片问题 总结在opencv中,图片显示的问题.简要解决图片 ...

  8. OpenCV调整彩色图像的饱和度和亮度

    问题 如何调整彩色图像的饱和度和亮度 解决思路 详细步骤: 将RGB图像值归一化到[0, 1] 然后使用函数cvtColor进行色彩空间的转换 接下来可以根据处理灰度图像对比度增强伽马变换或者线性变换 ...

  9. iOS 图像处理-调整图像亮度

    - (UIImage*) getBrighterImage:(UIImage *)originalImage { UIImage *brighterImage; CIContext *context ...

随机推荐

  1. iNeuOS 物联网云操作系统2.0发布,集成设备容器、视图建模、机器学习三大模块

    目       录 1.      概述... 2 2.      使命及目标... 3 3.      系统框架... 4 4.      设备容器(iNeuKernel)... 4 5.      ...

  2. Liunx学习总结(六)--进程

    进程概述 简单来讲程序是一个包含可以执行代码的静态的文件.进程是一个开始执行但是还没有结束的程序的实例.当程序被系统调用到内存以后,系统会给程序分配一定的资源(内存,设备等等)然后进行一系列的复杂操作 ...

  3. 【RabbitMQ】如何进行消息可靠投递【下篇】

    说明 上一篇文章里,我们了解了如何保证消息被可靠投递到RabbitMQ的交换机中,但还有一些不完美的地方,试想一下,如果向RabbitMQ服务器发送一条消息,服务器确实也接收到了这条消息,于是给你返回 ...

  4. lightoj 1201 - A Perfect Murder(树形dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1201 题解:简单的树形dp,dp[0][i]表示以i为根结点不傻i的最多有多少 ...

  5. 天梯杯 PAT L2-013 红色警报

    战争中保持各个城市间的连通性非常重要.本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报.注意:若该国本来就不完全连通,是分裂的k个区域,而失去一个城市并不 ...

  6. mariadb+haproxy实现负载均衡(一)

    根据实际情况,数据生产无论是量还是使用地方都在稳步增加,单一服务器的稳定性也越来越受到关注,所以想提前做好技术准备. 因为之前就安装好了数据库,现在只讨论haproxy的安装及相关使用. haprox ...

  7. Spring Cloud同步场景分布式事务怎样做?试试Seata

    一.概述 在微服务架构下,虽然我们会尽量避免分布式事务,但是只要业务复杂的情况下这是一个绕不开的问题,如何保证业务数据一致性呢?本文主要介绍同步场景下使用Seata的AT模式来解决一致性问题. Sea ...

  8. Alodi:为了保密我开发了一个系统

    每天都在愉快的造轮子,这次可以一键创建测试环境 咖啡君维护了几十个不同类型项目,其中有相当一部分项目是对保密性有很高要求的,也就是说下个版本要上线的内容是不能提前泄露的,就像苹果新产品的介绍网站决不允 ...

  9. Winform中实现ZedGraph新增自定义Y轴上下限、颜色、标题功能

    场景 Winform中实现ZedGraph的多条Y轴(附源码下载): https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1001322 ...

  10. gh-ost 原理剖析

    gh-ost 原理 一 简介 上一篇文章介绍 gh-ost 参数和具体的使用方法,以及核心特性-可动态调整 暂停,动态修改参数等等.本文分几部分从源码方面解释gh-ost的执行过程,数据迁移,切换细节 ...