opencv调整图像亮度对比度
图像处理
图像变换就是找到一个函数,把原始图像矩阵经过函数处理后,转换为目标图像矩阵.
可以分为两种方式,即像素级别的变换和区域级别的变换
- Point operators (pixel transforms)
- Neighborhood (area-based) operators
像素级别的变换就相当于\(p_{after}(i,j) = f(p_{before}(i,j))\),即变换后的每个像素值都与变换前的同位置的像素值有个函数映射关系.
对比度和亮度改变
线性变换
最常用的是线性变换.即\(g(i,j) = \alpha \cdot f(i,j) + \beta\)
f(i,j)是原像素值,g(i,j)是变换后的像素值.
\(\alpha\)调整对比度,\(\beta\)调整亮度.有时也称之为gain和bias参数.
对比度是什么?不就是"亮和暗的区别"吗?也就是像素值的大小的区别.那我乘以一个alpha系数,当alpha很大的时候就是放大了这种亮度值的差异,也就是提高了对比度,当alpha很小时,也就是缩小了亮度的差异,也就是缩小了对比度.
beta就更好理解了,直接在像素的亮度值上加上一个数,正数就是提高亮度,负数降低亮度.
看一下下面代码的示例:
from __future__ import print_function
from builtins import input
import cv2 as cv
import numpy as np
import argparse
# Read image given by user
parser = argparse.ArgumentParser(description='Code for Changing the contrast and brightness of an image! tutorial.')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
image = cv.imread(cv.samples.findFile(args.input))
if image is None:
print('Could not open or find the image: ', args.input)
exit(0)
new_image = np.zeros(image.shape, image.dtype)
alpha = 1.0 # Simple contrast control
beta = 0 # Simple brightness control
# Initialize values
print(' Basic Linear Transforms ')
print('-------------------------')
try:
alpha = float(input('* Enter the alpha value [1.0-3.0]: '))
beta = int(input('* Enter the beta value [0-100]: '))
except ValueError:
print('Error, not a number')
# Do the operation new_image(i,j) = alpha*image(i,j) + beta
# Instead of these 'for' loops we could have used simply:
# new_image = cv.convertScaleAbs(image, alpha=alpha, beta=beta)
# but we wanted to show you how to access the pixels :)
for y in range(image.shape[0]):
for x in range(image.shape[1]):
for c in range(image.shape[2]):
new_image[y,x,c] = np.clip(alpha*image[y,x,c] + beta, 0, 255)
cv.imshow('Original Image', image)
cv.imshow('New Image', new_image)
# Wait until user press some key
cv.waitKey()
提示module 'cv2' has no attribute 'samples'的话要先安装pip install opencv-python==4.0.0.21.
执行:python change_brightness_contrast.py --input ./lights.jpeg

上图是alpha=2,beta=20的一个效果图.
非线性变换

线性变换有个问题,如上图,α=1.3 and β=40,提高原图亮度的同时,导致云几乎看不见了.如果要看见云的话,建筑的亮度又不够.
这个时候就引入了非线性变换. 称之为Gamma correction
\(O = \left( \frac{I}{255} \right)^{\gamma} \times 255\)
与线性变换不同,对不同的原始亮度值,其改变强度是不同的,是非线性的.

在 γ<1的时候,会提高图片亮度.>1时,降低亮度.

γ=0.4的变换效果图如上.可以看到云层及建筑变亮的同时还保持了对比度让图像依然清晰.

如果查看不同变换下的灰度直方图的话可以看到.中间是原图的灰度直方图,可以看到低亮度值的像素点很多.
左边是做了线性变换的,整体直方图产生了右移,并且在255处出现峰值.因为每个像素点都增加了亮度嘛.导致了白云和蓝天过于明亮无法区分.
而右边做了gamma校正的图像亮度分布比较均匀,即使得低亮度值的部分得以加强,又不至于过度曝光使得白云无法区分.
实现Gamma correction的代码如下.
lookUpTable = np.empty((1,256), np.uint8)
for i in range(256):
lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255)
res = cv.LUT(img_original, lookUpTable)
其中cv.LUT就是个变换函数.从lookUpTable里找到变换关系,生成新的图像矩阵.https://docs.opencv.org/master/d2/de8/group__core__array.html#gab55b8d062b7f5587720ede032d34156f
参考:https://docs.opencv.org/master/d3/dc1/tutorial_basic_linear_transform.html
opencv调整图像亮度对比度的更多相关文章
- opencv::调整图像亮度与对比度
图像变换可以看作如下: - 像素变换 – 点操作 - 邻域操作 – 区域 调整图像亮度和对比度属于像素变换-点操作 //创建一张跟原图像大小和类型一致的空白图像.像素值初始化为0 Mat new_im ...
- 跟我一起学opencv 第五课之调整图像亮度和对比度
一.调整图像亮度与对比度 1.图像变换 ---像素变换-点操作 ---邻域操作-区域操作 调整图像亮度和对比度属于像素变换-点操作 公式为:g(i,j) = αf(i,j) + β 其中α>0 ...
- 【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整
今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对 ...
- openCV - 5~7 图像混合、调整图像亮度与对比度、绘制形状与文字
5. 图像混合 理论-线性混合操作.相关API(addWeighted) 理论-线性混合操作 用到的公式 (其中 α 的取值范围为0~1之间) 相关API(addWeighted) 参数1:输入图像M ...
- Opencv改变图像亮度和对比度以及优化
https://blog.csdn.net/u013139259/article/details/52145377 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.cs ...
- opencv 彩色图像亮度、对比度调节 直方图均衡化
直接上代码: #include <Windows.h> #include <iostream>// for stand I/O #include <string> ...
- 转载:Opencv调整运行窗口图片的大小
本文来自:http://blog.csdn.net/cumtml/article/details/52807961 Opencv在运算时显示图片问题 总结在opencv中,图片显示的问题.简要解决图片 ...
- OpenCV调整彩色图像的饱和度和亮度
问题 如何调整彩色图像的饱和度和亮度 解决思路 详细步骤: 将RGB图像值归一化到[0, 1] 然后使用函数cvtColor进行色彩空间的转换 接下来可以根据处理灰度图像对比度增强伽马变换或者线性变换 ...
- iOS 图像处理-调整图像亮度
- (UIImage*) getBrighterImage:(UIImage *)originalImage { UIImage *brighterImage; CIContext *context ...
随机推荐
- 前端利器躬行记(2)——Babel
Babel是一个JavaScript编译器,不仅能将当前运行环境不支持的JavaScript语法(例如ES6.ES7等)编译成向下兼容的可用语法(例如ES3或ES5),这其中会涉及新语法的转换和缺失特 ...
- 自由变形技术(Free-Form Deformation)
自由变形技术Free-Form Deformation是编辑几何模型的重要手段,它于80年代由Sederberg等人提出,目前许多三维建模软件中都有这种变形算法.自由变形方法在变形过程中并不是直接操作 ...
- python 32 操作系统与进程
目录 1. 操作系统 1.1 作用 1.2 操作系统的发展 2. 进程的理论 2.1 相关名词 2.2 进程的创建 2.3 进程的状态: 1. 操作系统 管理.控制.协调计算机硬件与软件资源的计算 ...
- Codeforces 936C
题意略. 思路: 这个题目没做出来是因为缺少一个整体的构造思路. 正确的构造思路是不断地在s中去构造并且扩大t的后缀,构造好的后缀总是放在前面,然后不断地把它往后挤,最后将s构造成t. 比如: 现在在 ...
- hdfs运行机制
hdfs:分布式文件系统 hdfs有着文件系统共同的特征: 1.有目录结构,顶层目录是: / 2.系统中存放的就是文件 3.系统可以提供对文件的:创建.删除.修改.查看.移动等功能 hdfs跟普通的 ...
- Python中yield解析
小探yield 查看 python yield 文档 yield expressions: Using a yield expression in a function's body causes t ...
- HDU-6333 Problem B. Harvest of Apples 莫队
HDU-6333 题意: 有n个不同的苹果,你最多可以拿m个,问有多少种取法,多组数据,组数和n,m都是1e5,所以打表也打不了. 思路: 这道题要用到组合数的性质,记S(n,m)为从n中最多取m个的 ...
- 【Windows】PostgreSql安装
Installer安装包问题 Problem running post-install step. Installation may not complete correctly. The datab ...
- 【Offer】[29] 【顺时针打印矩阵】
题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字. 例如,如果输入如下矩阵:  则依次打印出数字1,2,3,4,8,12, ...
- odoo12之应用:一、双因子验证(Two-factor authentication, 2FA)(HOTP,TOTP)附源码
前言 双因子认证:双因子认证(2FA)是指结合密码以及实物(信用卡.SMS手机.令牌或指纹等生物标志)两种条件对用户进行认证的方法.--百度百科 跟我一样"老"的网瘾少年想必一定见 ...