问题描述

ctr的全称是click through rate,就是预估用户的点击率,可以用于推荐系统的ranking阶段。ctr预估可以理解为给用户的特征、item的特征以及context的特征(比如日期,时间等),然后计算出user item pair的点击率。

问题定义

P(Y=1|X_{user},X_{item},X_{context})

就是计算上面的概率。

模型梳理

LR、SVM等线性模型

线性模型的特点是将用户特征,Item特征以及Context特征做一些预处理,然后concat后输入到模型里面,预处理包括连续特征做归一化,类别特征会做one hot编码。

xgboost、lightgbm 树模型

树模型和线性模型的做法差不多,也是将三类特征concat之后一起输入到模型,就能得到结果。

和线性模型的不同点:

  • 连续值特征无需做归一化
  • 单值类别特征(比如性别,只能是男或者女),无需做one hot编码,多值类别模型还是需要做one hot编码。

POLY2多项式模型

前两类模型都是考虑的单特征对最终决策的影响,但是都没有显式的考虑特征交叉对最终决策的影响。比如:双十一之前推荐淘宝app的点击率应该要高于双十一之后(这里说显式是因为,树模型也能部分考虑这个因素)。

PLOY2模型就直接将所有特征的交叉作为新的特征,输入到模型里面,将交叉属性对决策的影响从隐性提高到显性。

缺点:

  • 特征太多,而且非常稀疏,很多特征在训练中没有出现过

FM 因子机模型

FM模型可以理解为给每一个特征学到一个embedding,然后交叉模型的权重就理解为对应embeeding的内积。这样就能解决PLOY2的问题,没有出现的特征对也能得到权重,只要这个特征和其他特征出现过就能学到一个embedding,就能得到权重。

FFM

FFM是对FM的一个改进,FM给一个特征只学到一个embedding,而FFM能给每一个特征和另一个属性域都学习一个embedding。

缺点:

  • 每一个特征对对都能得到一个权重,但是有可能并不是合适的,因为有可能这俩特征并不是能对决策起相关作用的。
  • 只能考虑特征对的决策的作用,多维属性交叉就没有考虑了

Wide and Deep

Wide and Deep模型可以理解为FM和POLY2的结合,作者认为FM模型过于泛化,而PLOY2模型过于记忆(记忆的含义是只能学到训练数据中存在的特征对),那就两者结合到一起好了。

wide部分考虑的是显式的特征对对决策的影响,deep部分是隐式的特征,特征对以及高阶特征对决策的影响。

DeepFM 神经网络因子机

这个模型和FM的思路有一定的类似,都是给特征学习embedding,然后用embedding来学习特征之间交叉的关系。

DeepFM可以理解为wide and deep的中wide部分的扩展,wide and deep中特征交叉是手动选择某些特征进行交叉,而DeepFM是对所有特征对进行交叉。

不同点:

FM是将embedding的内积作为特征对的权重,过于粗暴,而且只能考虑两个特征之间的关系,但是多个特征之间的关系就很难学到了。

DNN的非线性能更好的学习到特征之间的关系。

以上只是个人对模型的梳理和个人理解,肯定有不到位之处,欢迎留言指点。

ctr预估论文梳理和个人理解的更多相关文章

  1. 微软的一篇ctr预估的论文:Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine。

    周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through R ...

  2. (读论文)推荐系统之ctr预估-DeepFM模型解析

    今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问 ...

  3. 深度学习在CTR预估中的应用

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ e ...

  4. 闲聊DNN CTR预估模型

    原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张 ...

  5. 深度CTR预估模型中的特征自动组合机制演化简史 zz

    众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有 ...

  6. CTR预估经典模型总结

    计算广告领域中数据特点:    1 正负样本不平衡    2 大量id类特征,高维,多领域(一个类别型特征就是一个field,比如上面的Weekday.Gender.City这是三个field),稀疏 ...

  7. 计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践

    计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局   版 ...

  8. 【项目】百度搜索广告CTR预估

    -------倒叙查看本文. 6,用auc对测试的结果进行评估: auc代码如下: #!/usr/bin/env python import sys def auc(labels,predicted_ ...

  9. CTR预估评价指标介绍

    1 离线指标 1.1 LogLoss 1.1.1 KL散度 logloss使用KL散度来计算.设样本的真实分布为P,预测分布为Q,则KL散度定义如下: 这里可以通俗地把KL散度理解为相同事件空间里两个 ...

随机推荐

  1. 这些Android系统样式中的颜色属性你知道吗?

    Android 系统样式中的颜色属性 推荐阅读看完后彻底搞清楚Android中的 Attr . Style .Theme 几个常用的颜色属性 先放上一张经典的图片,图片来自网络. 这张图在网上很是流传 ...

  2. Data Management Technology(1) -- Introduction

    1.Database concepts (1)Data & Information Information Is any kind of event that affects the stat ...

  3. sqlserver实现分隔字符串

    sqlserver 使用函数实现分隔字符串 create function dbo.fn_split ( @str_source nvarchar(max), ) ) returns @temp ta ...

  4. Visual Studio Code管理MySQL

    1. VS Code安装插件:MySQL , 安装完毕重新加载即可激活 2. 连接 mysql 3. 断开连接mysql 4. 简单操作 查看字段 新建查询语句 显示表结构 插入数据

  5. VS中添加Web References

    鼠标右击项目->添加->服务引用->高级->添加Web引用->输入URL->点击前往 如下图所示:

  6. postman---Postman配置环境变量和全局变量

    我们在测试的过程中,遇到最多的问题也可以是环境的问题了吧,今天开发用了这个测试环境,明天又换了另一个测试环境,这样对于我们测试非常的麻烦,特别最接口的时候需要来回的输入环境地址比较麻烦,今天我们看看强 ...

  7. SPA项目开发之tab页实现

    实现思路及细节 1.利用前面博客所讲的Vuex的知识:定义几个变量 Options:存放tab页对象的容器(主要是路由路径以及tab页的名字) activeIndex:被激活的tab页路由路径 sho ...

  8. Redis安装和基本操作

    Redis 简介Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 是属于非关系型数据库1.数据比模型较简单2.需要灵活性更强的IT系统3.对数据库性能 ...

  9. java8-10-Stream的终止操作

      Stream的终止操作   * allMatch 是否匹配所有 * anyMatch 是否匹配一个 * noneMatch 是否没有匹配一个 * findFirst 返回第一个   * count ...

  10. webdriver浏览器版本驱动对应以及下载

    对于webdriver和各个浏览器的版本的对应,我最近发现浏览器驱动的对应在selenium库的源码里都有提及,路径是:python>site-packages>selenium>w ...