bzoj2431 || 洛谷P1521 求逆序对
考虑一下插⼊法
n<=100n<=100n<=100
f[i][j]f[i][j]f[i][j]表⽰111~iii的全排列有j个逆序对的⽅案数
f[i][j]=Σf[i−1][j−k](0<=k<=i−1)f[i][j]=Σf[i-1][j-k] (0<=k<=i-1)f[i][j]=Σf[i−1][j−k](0<=k<=i−1)
O(m∗n2)O(m*n^2)O(m∗n2)
拓展:如果n<=1000n<=1000n<=1000呢?
n<=1000n<=1000n<=1000?
f[i][j]f[i][j]f[i][j]是f[i−1]f[i-1]f[i−1]中连续⼀段的和
前缀和优化
O(n∗m)O(n*m)O(n∗m)
下面上非拓展的代码:
#include<cstdio>
using namespace std;
int f[105][6005];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
f[1][0]=1;
f[2][0]=1;
f[2][1]=1;
f[0][0]=1;
for(int i=3;i<=n;i++)
{
for(int j=0;j<=k;j++)
{
for(int kk=0;kk<=i-1&&kk<=j;kk++)
{
f[i][j]+=f[i-1][j-kk]%10000;
}
}
}
printf("%d",f[n][k]%10000);
return 0;
}
bzoj2431 || 洛谷P1521 求逆序对的更多相关文章
- 洛谷P1521 求逆序对 题解
题意: 求1到n的全排列中有m对逆序对的方案数. 思路: 1.f[i][j]表示1到i的全排列中有j对逆序对的方案数. 2.显然,1到i的全排列最多有(i-1)*i/2对逆序对,而对于f[i][j]来 ...
- 洛谷 P1521 求逆序对
题目描述 我们说(i,j)是a1,a2,…,aN的一个逆序对当且仅当i<j且ai>a j.例如2,4,1,3,5的逆序对有3个,分别为(1,3),(2,3),(2,4).现在已知N和K,求 ...
- 洛谷P1908 求逆序对 [归并排序]
题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游 戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样 ...
- 洛谷P1393 动态逆序对(CDQ分治)
传送门 题解 听别人说这是洛谷用户的双倍经验啊……然而根本没有感觉到……因为另外的那题我是用树状数组套主席树做的……而且莫名其妙感觉那种方法思路更清晰(虽然码量稍稍大了那么一点点)……感谢Candy大 ...
- 洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...
- 洛谷P3157 动态逆序对 [CQOI2011] cdq分治
正解:cdq分治 解题报告: 传送门! 长得有点像双倍经验还麻油仔细看先放上来QwQ! 这题首先想到的就直接做逆序对,然后记录每个点的贡献,删去就减掉就好 但是仔细一想会发现布星啊,如果有一对逆序对的 ...
- 【洛谷P2513】逆序对数列
前缀和.滚动数组优化dp f[i][j]表示前i个数,逆序对数为j的方案数 我们知道,在第k个位置放第i个数,单步得到的逆序对数为i-k 则在前i个数,最多能产生的逆序对数为i个,最少0个,均可转移到 ...
- 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)
To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...
- [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)
[NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...
随机推荐
- 初涉Delphi Socket编程
不是第一次接触socket编程了,但以前都是看别人的依葫芦画瓢,也不知道具体的原理. 新的项目,有了新的开始,同时也需要有新的认识. Delphi 中带有两套TCP Socket组件: Indy So ...
- c#编写的基于Socket的异步通信系统封装DLL--SanNiuSignal.DLL
SanNiuSignal是一个基于异步socket的完全免费DLL:它里面封装了Client,Server以及UDP:有了这个DLL:用户不用去关心心跳:粘包 :组包:发送文件等繁琐的事情:大家只要简 ...
- 只言片语 - cell 图片复用问题
一. 今日做项目遇到图片复用问题,返回cell高度相同,由于网络不好出现图片复用,发现问题 Cell 图片加载方法如下: - (void)sd_setImageWithURL:(NSURL *)u ...
- GTest翻译词汇表
版本号:v_0.1 词汇表 Assertion: 断言. Bug: 不翻译. Caveat: 警告. Error bound: 误差范围. Exception: 异常. Flag: 标志位. Floa ...
- uva11038_How Many O's?_数位DP
问m-n之间的数中共有多少个0,过程稍稍麻烦了一些,半天的时间才搞定. 直接上码吧 /********************************************************* ...
- hive -e和hive -f的区别(转)
大家都知道,hive -f 后面指定的是一个文件,然后文件里面直接写sql,就可以运行hive的sql,hive -e 后面是直接用双引号拼接hivesql,然后就可以执行命令. 但是,有这么一个东西 ...
- python trojan development 2nd —— use python to send mail and listen to the key board then combine them
请勿用于非法用途!!!!!本人概不负责!!!原创作品,转载说明出处!!!!! from pynput.keyboard import Key,Listener import logging impor ...
- Hadoop —— 单机环境搭建
一.前置条件 Hadoop的运行依赖JDK,需要预先安装,安装步骤见: Linux下JDK的安装 二.配置免密登录 Hadoop组件之间需要基于SSH进行通讯. 2.1 配置映射 配置ip地址和主机名 ...
- python算法与数据结构-队列(44)
一.队列的介绍 队列的定义:队列是一种特殊的线性表,只允许在表的头部(front处)进行删除操作,在表的尾部(rear处)进行插入操作的线性数据结构,这种结构就叫做队列.进行插入操作的一端称为队尾,进 ...
- Java基础篇01
01. 面向对象 --> 什么是面向对象 面向对象 面向对象程序设计,简称OOP(Object Oriented Programming). 对象: 指人们要研究的任何事物,不管是物理上具体的事 ...