Kafka学习(三)-------- Kafka核心之Cosumer
了解了什么是kafka( https://www.cnblogs.com/tree1123/p/11226880.html)以后
学习Kafka核心之消费者,kafka的消费者经过几次版本变化,特别容易混乱,所以一定要搞清楚是哪个版本再研究。
一、旧版本consumer
只有旧版本(0.9以前)才有 high-level consumer 和 low-level consumer之分,很多的文章提到的就是这两个:低阶消费者和高阶消费者,低阶消费者更灵活但是需要自己维护很多东西,高阶就死板一点但是不需要维护太多东西。
high-level consumer就是消费者组。
low-level consumer是单独一个消费者,单个consumer没有什么消费者组的概念,与其他consumer相互之间不关联。
1、low-level consumer
low-level consumer底层实现是
SimpleConsumer 他可以自行管理消费者
Storm的Kafka插件 storm-kafka就是使用了SimpleConsumer
优点是灵活 , 可以从任意位置拿消息 。
如果需要: 重复读取数据 只消费部分分区数据 精确消费 就得用这个,
不过必须自己处理位移提交 寻找分区leader broker 处理leader变更。
接口中的方法:
fetch
send 发送请求
getOffsetBefore
commitOffsets
fetchOffsets
earliestOrlatestOffset
close
使用步骤:
参照官网,比较复杂需要好几步来拉取消息。
Find an active Broker and find out which Broker is the leader for your topic and partition
找到活跃的broker 找到哪个broker是你的topic和partition的leader
Determine who the replica Brokers are for your topic and partition
查出replica 的brokers
Build the request defining what data you are interested in
建立请求
Fetch the data
拿数据
Identify and recover from leader changes
leader变化时恢复
也可以查询一些offset等metadata信息,具体代码如下。
//根据指定的分区从主题元数据中找到主副本
SimpleConsumer consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024,
"leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics); kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
List<TopicMetadata> metaData = resp.topicsMetadata();
String leader = metaData.leader().host();
//获取分区的offset等信息
//比如获取lastoffset
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
long[] offsets = response.offsets(topic, partition);
long lastoffset = offsets[0];
这个api现在应用不多,除非你有特殊需求,比如要自己写监控,你可能需要更多的元数据信息。
2、high-level consumer
主要使用的类:ConsumerConnector
屏蔽了每个topic的每个Partition的offset的管理(自动读取zookeeper中该Consumer group的last offset)
Broker失败转移,增减Partition Consumer时的负载均衡(当Partiotion和Consumer增减时,Kafka自动负载均衡)
这些功能low-level consumer都需要自己实现的。
主要方法如下:
createMessageStreams
createMessageStreamsByFilter
commitOffsets
setconsumerReblanceListener
shutdown
group通过zookeeper完成核心功能,
zookeeper目录结构如下:
/consumers/groupId/ids/consumre.id
记录该consumer的订阅信息,还被用来监听consumer存活状态。这是一个临时节点,会话失效将会自动删除。
/consumers/groupId/owners/topic/partition
保存consumer各个消费线程的id,执行rebalance时保存。
/consumers/groupId/offsets/topic/partition
保存该group消费指定分区的位移信息。
这个consumer支持多线程设计,只创建一个consumer实例,但如果是多个分区,将会自动创建多个线程消费。
使用步骤:
Properties properties = new Properties();
properties.put("zookeeper.connect", "ip1:2181,ip2:2181,ip3:2181");//声明zk
properties.put("group.id", "group03");
ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, 1); // 一次从主题中获取一个数据
Map<String, List<KafkaStream<byte[], byte[]>>> messageStreams = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = messageStreams.get(topic).get(0);// 获取每次接收到的这个数据 如果是多线程在这里处理多分区的情况
ConsumerIterator<byte[], byte[]> iterator = stream.iterator();
while(iterator.hasNext()){
String message = new String(iterator.next().message());
System.out.println("接收到: " + message);
}
//auto.offset.reset 默认值为largest
//从头消费 properties.put("auto.offset.reset", "smallest");
很简单,我们0.9版本之前使用的很多都是他,集成spring的方法等等。不过0.9版本以后新的consumer出现了。
二、新版本consumer
先说一下版本的问题:
Kafka 0.10.0.0之后 增加了 Kafka Streams 所以Kafka1.0开始Streams 就稳定了。
kafka security 0.9.0.0以后 0.10.0.1之后稳定
0.10.1.0之后 新版本consumer稳定
storm有两个连kafka的包:
storm-kafka 使用了旧版本的consumer
storm-kafka-client 使用了新版本consumer
kafka 0.9.0.0废弃了旧版producer和consumer 旧版时scala版 新版用java开发
版本 | 推荐producer | 推荐consumer | 原因 |
---|---|---|---|
0.8.2.2 | 旧版 | 旧版 | 新producer尚不稳定 |
0.9.0.x | 新版 | 旧版 | 新producer稳定 |
0.10.0.x | 新版 | 旧版 | 新consumer不稳定 |
0.10.1.0 | 新版 | 新版 | 新consumer稳定 |
0.10.2.x | 新版 | 新版 | 都稳定了 |
旧版本中offset管理依托zookeeper,新版本中不在依靠zookeeper。
语言 | 包名 | 主要使用类 | |
---|---|---|---|
旧版本 | scala | kafka.consumer.* | ZookeeperConsumerConnector SimpleConsumer |
新版本 | java | org.apache.kafka.clients.consumer.* | KafkaConsumer |
新版本的几个核心概念:
consumer group
消费者使用一个消费者组名(group.id)来标记自己,topic的每条消息都只会发送到每个订阅他的消费者组的一个消费者实例上。
1、一个消费者组有若干个消费者。
2、对于同一个group,topic的每条消息只能被发送到group下的一个consumer实例上。
3、topic消息可以被发送到多个group中。
consumer端offset
记录每一个consumer消费的分区的位置
kafka没有把这个放在服务器端,保存在了consumer group中,并定期持久化。
旧版本会把这个offset定期存在zookeeper中:路径是 /consumers/groupid/offsets/topic/partitionid
新版本将offset放在了一个内部topic中:__consumer_offsets(前面两个下划线) 里面有50个分区
所以新版本的consumer就不需要连zookeeper了。
旧版本设置offsets.storage=kafka设置位移提交到这,不常使用。
__consumer_offsets中的结构: key = group.id+topic+partition value=offset
consumer group reblance
单个consumer是没有rebalance的。
他规定了一个consumer group下的所有consumer如何去分配所有的分区。
单线程示例代码:
Properties props = new Properties();
props.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset","earliest");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("foo", "bar"));
try{
while (true) {
ConsumerRecords<String, String> records = consumer.poll(1000);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}finally{
consumer.close();
}
很简单,1、只需要配置kafka的server groupid autocommit 序列化 autooffsetreset(其中 bootstrap.server group.id key.deserializer value.deserializer 必须指定);
2、用这些Properties构建consumer对象(KafkaConsumer还有其他构造,可以把序列化传进去);
3、subscribe订阅topic列表(可以用正则订阅Pattern.compile("kafka.*")
使用正则必须指定一个listener subscribe(Pattern pattern, ConsumerRebalanceListener listener)); 可以重写这个接口来实现 分区变更时的逻辑。如果设置了enable.auto.commit = true 就不用理会这个逻辑。
4、然后循环poll消息(这里的1000是超时设定,如果没有很多数据,也就等一秒);
5、处理消息(打印了offset key value 这里写处理逻辑)。
6、关闭KafkaConsumer(可以传一个timeout值 等待秒数 默认是30)。
Properties详解:
bootstrap.server(最好用主机名不用ip kafka内部用的主机名 除非自己配置了ip)
deserializer 反序列化consumer从broker端获取的是字节数组,还原回对象类型。
默认有十几种:StringDeserializer LongDeserializer DoubleDeserializer。。
也可以自定义:定义serializer格式 创建自定义deserializer类实现Deserializer 接口 重写逻辑
除了四个必传的 bootstrap.server group.id key.deserializer value.deserializer
还有session.timeout.ms "coordinator检测失败的时间"
是检测consumer挂掉的时间 为了可以及时的rebalance 默认是10秒 可以设置更小的值避免消息延迟。
max.poll.interval.ms "consumer处理逻辑最大时间"
处理逻辑比较复杂的时候 可以设置这个值 避免造成不必要的 rebalance ,因为两次poll时间超过了这个参数,kafka认为这个consumer已经跟不上了,会踢出组,而且不能提交offset,就会重复消费。默认是5分钟。
auto.offset.reset "无位移或者位移越界时kafka的应对策略"
所以如果启动了一个group从头消费 成功提交位移后 重启后还是接着消费 这个参数无效
所以3个值的解释是:
earliset 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从最早的位移消费
latest 当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据 none topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
(注意kafka-0.10.1.X版本之前: auto.offset.reset 的值为smallest,和,largest.(offest保存在zk中) 、
我们这是说的是新版本:kafka-0.10.1.X版本之后: auto.offset.reset 的值更改为:earliest,latest,和none (offest保存在kafka的一个特殊的topic名为:__consumer_offsets里面))
enable.auto.commit 是否自动提交位移
true 自动提交 false需要用户手动提交 有只处理一次需要的 最近设置为false自己控制。
fetch.max.bytes consumer单次获取最大字节数
max.poll.records 单次poll返回的最大消息数
默认500条 如果消费很轻量 可以适当提高这个值 增加消费速度。
hearbeat.interval.ms consumer其他组员感知rabalance的时间
该值必须小于 session.timeout.ms 如果检测到 consumer挂掉 也就根本无法感知rabalance了
connections.max.idle.ms 定期关闭连接的时间
默认是9分钟 可以设置为-1 永不关闭
poll方法详解:
(旧版本:多分区多线程 新版本:一个线程管理多个socket连接)
但新版本KafkaConsumer是双线程的,主线程负责:消息获取,rebalance,coordinator,位移提交等等,
另一个是后台心跳线程。
根据上边的各种配置,poll方法会找到offset,当获取了足够多的可用数据,或者等待时间超过了指定的超时时间,就会返回。
java consumer不是线程安全的,同一个KafkaConsumer用在了多个线程中,将会报Kafka Consumer is not safe for multi-threaded assess异常。可以加一个同步锁进行保护。
poll的超时参数,已经说过1000的话是超时设定,如果没有很多数据,也就等一秒,就返回了,比如定时5秒的将消息写入,就可以将超时参数设置为5000,达到效率最大化。
如果没有定时任务呢,那就设置为 Long.MAX_VALUE 未获取足够多的数据就无限等待。这里要捕获一下WakeupException。
consumer offset详解:
consumer需要定期向kafka提交自己的offset信息。已经学过 新版本将他提交到了一个topic中 __consumer_offsets。
offset有一个更大的作用是实现交付语义:
最多一次 at most once 可能丢失 不会重复
最少一次 at least once 可能重复 不会丢失
精确一次 exactly once 不丢失 不重复 就一次
若consumer在消费之前提交位移 就实现了at most once
若是消费后提交 就实现了 at least once 默认是这个。
consumer的多个位置信息:
上次提交的位置 当前位置 水位 日志最新位移
0 1 。。 5 。。 10 。。 15
上次提交位置:consumer最近一次提交的offset值;
当前位置:consumer上次poll 到了这个位置 但是还没提交;
水位:这是分区日志的管理 consumer无法读取水位以上的消息;
最新位移: 也是分区日志的管理 最大的位移值 一定不会比水位小。
新版本的consumer会在broker选一个broker作为consumergroup的coordinator,用于实现组成员管理,消费分配方案,提交位移。如果consumer崩溃,他负责的分区就分配给其他consumer,如果没有做好位移提交就可能重复消费。
多次提交的情况,kafka只关注最新一次的提交。
默认consumer自动提交位移 提交间隔为5秒 可以通过 auto.commit.interval.ms 设置这个间隔。
自动提交可以减少开发,但是可能重复消费,所以需要精准消费时还是要手动提交。设置手动提交 enable.auto.commit = false,然后调用 consumer.commitSync() 或者 consumer.commitAync() Sync为同步方式,阻塞 Aync为异步方式,不会阻塞。这两个方法可以传参,指定为哪个分区提交,这样更合理一些。
(旧版本的自动提交设置是 auto.commit.enable 默认间隔为60秒)
rebalance详解:
rebalance是consumer group如何分配topic的所有分区。
正常情况,比如有10个分区,5个consumer 那么consumer group将为每个consumer 平均分配两个分区。
每个分区只会分给一个consumer实例。有consumer出现问题,会重新执行这个过程,这个过程就是rebalance。
(旧版本通过zookeeper管理rebalance,新版本会选取某个broker为group coordinator来管理)
rebalance的触发条件:
1、有新的consumer加入,或者有consumer离开或者挂掉。
2、group订阅的topic发生变更,比如正则订阅。
3、group订阅的分区数发生变化。
第一个经常出现,不一定是挂掉,也可能是处理太慢,为了避免频繁rebalance,要调整好request.timeout.ms max.poll.records和ma.poll.interval.
rebalance分区策略:
partition.assignment.strategy 设置 自定义分区策略-创建分区器 assignor
range策略(默认),将分区划分为分区段,一次分配给每个consumer。
round-robin策略,轮询分配。
sticky策略(0.11.0.0出现,更优秀),range策略在订阅多个topic时会不均匀。
sticky有两个原则,当两者发生冲突时,第一个目标优先于第二个目标。
- 分区的分配要尽可能的均匀;
- 分区的分配尽可能的与上次分配的保持相同。
rebalance generation分代机制保证rabalance时重复提交的问题,延迟的offset提交时旧的generation信息会报异常ILLEGAL_GENERATION
rebalance过程:
1、确定coordinator所在的broker,建立socket连接。
确定算法: Math.abs(groupID.hashCode) % offsets.topic.num.partition 参数值(默认50)
寻找__consumer_offset分区50的leader副本所在的broker,该broker即为这个group的coordinator
2、加入组
所有consumer会向coordinator发送JoinGroup请求,收到所有请求后选一个consumer做leader(这个leader是consumer coordinator是broker),coordinator把成员和订阅信息发给coordinator。
3、同步分配方案
leader制定分配方案,通过SyncGroup请求发给coordinator,每个consumer也会发请求返回方案。
kafka也支持offset不提交到__consumer_offset,可以自定义,这时候就需要实现一个监听器ConsumerRebalanceListener,在这里重新处理Rebalance的逻辑。
多线程示例代码:
这里要根据自身需求开发,我这里只举一个简单的例子,就是几个分区就启动几个consumer,一一对应。
三个类:
Main:
public static void main(String[] args) {
String bootstrapServers = "kafka01:9092,kafka02:9092";
String groupId = "test";
String topic = "testtopic";
int consumerNum = 3;
ConsumerGroup cg = new ConsumerGroup(consumerNum,bootstrapServers,groupId,topic);
cg.execute();
}
import java.util.ArrayList;
import java.util.List;
public class ConsumerGroup {
private List<ConsumerRunnable> consumers;
public ConsumerGroup(int consumerNum,String bootstrapServers,String groupId,String topic){
consumers = new ArrayList<>(consumerNum);
for(int i=0;i < consumerNum;i++){
ConsumerRunnable ConsumerRunnable = new ConsumerRunnable(bootstrapServers,groupId,topic);
consumers.add(ConsumerRunnable);
}
}
public void execute(){
for(ConsumerRunnable consumerRunnable:consumers){
new Thread(consumerRunnable).start();
}
}
}
import java.util.Arrays;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
public class ConsumerRunnable implements Runnable{
private final KafkaConsumer<String,String> consumer;
public ConsumerRunnable(String bootstrapServers,String groupId,String topic){
Properties props = new Properties();
props.put("bootstrap.servers", bootstrapServers);
props.put("group.id", groupId);
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset","earliest");
this.consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic));
}
@Override
public void run() {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(10);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}
}
standalone consumer
有一些需求,需要指定一个消费者消费某一个分区。彼此之间不干扰,一个standalone consumer崩溃不会影响其他。
类似旧版本的低阶消费者。
示例代码如下:consumer.assign方法订阅分区
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset","earliest");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
List<TopicPartition> partitions = new ArrayList<>();
List<PartitionInfo> allpartitions = consumer.partitionsFor("testtopic");
if(allpartitions!=null && !allpartitions.isEmpty()){
for(PartitionInfo partitionInfo:allpartitions){
partitions.add(new TopicPartition(partitionInfo.topic(),partitionInfo.partition()));
}
consumer.assign(partitions);
}
while (true) {
ConsumerRecords<String, String> records = consumer.poll(10);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}
以上为kafka消费者的学习,不同的具体细节还需要通过官网文档仔细学习。
更多实时计算,Flink,Kafka等相关技术博文,欢迎关注实时流式计算
Kafka学习(三)-------- Kafka核心之Cosumer的更多相关文章
- kafka学习(三)-kafka集群搭建
kafka集群搭建 下面简单的介绍一下kafka的集群搭建,单个kafka的安装更简单,下面以集群搭建为例子. 我们设置并部署有三个节点的 kafka 集合体,必须在每个节点上遵循下面的步骤来启动 k ...
- kafka学习(三)
kafka 消费者-从kafka读取数据 消费者和消费者群里 kafka消费者从属于消费者群组.一个群组里的消费者订阅的是同一主题,每个消费者接受主题一部分分区的消息.如果我们往群组里添加更多的消 ...
- Kafka学习之四 Kafka常用命令
Kafka常用命令 以下是kafka常用命令行总结: 1.查看topic的详细信息 ./kafka-topics.sh -zookeeper 127.0.0.1:2181 -describe -top ...
- kafka 学习资料
kafka 学习资料 kafka 学习资料 网址 kafka 中文教程 http://orchome.com/kafka/index
- Kafka学习笔记之Kafka三款监控工具
0x00 概述 在之前的博客中,介绍了Kafka Web Console这 个监控工具,在生产环境中使用,运行一段时间后,发现该工具会和Kafka生产者.消费者.ZooKeeper建立大量连接,从而导 ...
- Kafka学习之路 (三)Kafka的高可用
一.高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费, ...
- Kafka学习(一)kafka指南(about云翻译)
kafka 权威指南中文版 问题导读 1. 为什么数据管道是数据驱动企业的一个关键组成部分? 2. 发布/订阅消息的概念及其重要性是什么? 第一章 初识 kafka 企业是由数据驱动的.我们获取信息, ...
- Kafka学习文档
本教程假定您是一只小白,没有Kafka 或ZooKeeper 方面的经验. Kafka脚本在Unix和Windows平台有所不同,在Windows平台,请使用 bin\windows\ 而不是bin/ ...
- kafka学习(二)-------- 什么是Kafka
通过Kafka的快速入门 https://www.cnblogs.com/tree1123/p/11150927.html 能了解到Kafka的基本部署,使用,但他和其他的消息中间件有什么不同呢? K ...
- Kafka学习(学习过程记录)
Apache kafka 这,仅是我学习过程中记录的笔记.确定了一个待研究的主题,对这个主题进行全方面的剖析.笔记是用来方便我回顾与学习的,欢迎大家与我进行交流沟通,共同成长.不止是技术. Kafka ...
随机推荐
- Delphi中动态调用TXMLDocument的经历
var vXMLDocument: TXMLDocument;begin vXMLDocument := TXMLDocument.Create('c:/temp/temp.xml'); Cap ...
- java关键字-interface
1:是用关键字interface定义的. 2:接口中包含的成员,最常见的有全局常量.抽象方法. 注意:接口中的成员都有固定的修饰符. 成员变量:public static final 成员方法:pub ...
- golang开发:类库篇(一) Zap高性能日志类库的使用
为什么要用zap来写日志 原来是写PHP的,一直用的error_log,第一次写Go项目的时候,还真不知道该怎么写日志,后来就按照PHP的写法自己不成规范的捣鼓写.去了新公司之后,发现用的是zap.后 ...
- VMware克隆CentOS7,解决网络配置问题
问题: 安装CentOS7 mini版,静态IP配置完毕后,关闭虚机CentOS7-1,克隆虚拟机为CentOS-2.克隆出来的虚拟机使用ifconfig命令,无法发现网卡,只有一个lo设备.虚机无法 ...
- React躬行记(6)——事件
React在原生事件的基础上,重新设计了一套跨浏览器的合成事件(SyntheticEvent),在事件传播.注册方式.事件对象等多个方面都做了特别的处理. 一.注册事件 合成事件采用声明式的注册方式, ...
- 并发编程-concurrent指南-阻塞队列BlockingQueue
阻塞队列BlockingQueue,java.util.concurrent下的BlockingQueue接口表示一个线程放入和提取实例的队列. 适用场景: BlockingQueue通常用于一个线程 ...
- python异步IO编程(一)
python异步IO编程(一) 基础概念 协程:python generator与coroutine 异步IO (async IO):一种由多种语言实现的与语言无关的范例(或模型). asyncio ...
- redis源码笔记-内存管理zmalloc.c
redis的内存分配主要就是对malloc和free进行了一层简单的封装.具体的实现在zmalloc.h和zmalloc.c中.本文将对redis的内存管理相关几个比较重要的函数做逐一的介绍 参考: ...
- springboot2.0.4对接redis3.2.12版本哨兵模式
redis 哨兵模式的创建 1. 下载redis3.2.12版本.https://codeload.github.com/antirez/redis/zip/3.2.12 2. 解压后放到/usr/ ...
- Linux命令学习-history命令
Linux中,history命令的作用是显示历史记录和执行过的命令. 查看历史所有命令执行记录 history 查看最近的13条历史执行命令 history 13 执行历史记录中,序号为123的命令 ...