分析:

此题是小奔的方案的改进。小奔的方案思路:倒推,每次都从小到大排序并且保证小号在前,然后使每一个人分到的金币都是上一次加一,直到金币分完或者自己可以存活(投票率大于等于所需概率),如果不行就-1。 (即题目背景)

大奔的方案无非就是分两种情况:1.只讨好不是自己帮派的,那怕自己帮派成员都投反对票也能活下来。2.先讨好是自己帮派的(此时够了也要全部满足),然后如果不够就从小到大满足其他人。在这两种情况中选择一种(保证小号拿得多),就是答案。

代码:

(即使是Pascal,我也要排成c++的颜色

var
a,b,c,d,f,e:array[1..1000]of longint;
g:array[1..1000,1..1000]of boolean;
i,j,k1,k2,n,m,o,t,x,y,z:longint;
procedure zhx(p,q:longint);
var
i,j:longint;
s:real;
begin
i:=0;
s:=(o/100)*(q-p+1);
if trunc(s)<>s then s:=s+1;
j:=trunc(s);
for i:=p to q do if g[p,i] then begin dec(j); if p<>i then begin e[i]:=x; k2:=k2+x; end; end;
if j<=0 then exit;
i:=p;
while j>0 do
begin
inc(i);
if e[d[i]]<>0 then continue;
k2:=k2+b[i]+1;
e[d[i]]:=b[i]+1;
if e[d[p+i-1]]>m then e[d[p+i-1]]:=m;
dec(j);
end;
end;
procedure zx(p,q:longint);
var
i,j:longint;
begin
i:=0;
j:=0;
while (j/(q-p+1))<(o/100) do
begin
inc(i);
if i+p-1>q then begin k1:=maxlongint; exit; end;
if g[p,i+p-1] then continue;
inc(j);
k1:=k1+b[p+i-1]+1;
if i=1 then dec(k1);
a[d[p+i-1]]:=b[p+i-1]+1;
if a[d[p+i-1]]>m then a[d[p+i-1]]:=m;
end;
if (p+i-1)=q then exit;
for j:=p+i to q do a[d[j]]:=0;
end;
procedure qsort(l,r:longint);
var
i,j,mid,p,m1:longint;
begin
i:=l;j:=r;
mid:=b[(l+r) div 2];
m1:=d[(l+r) div 2];
repeat
while (b[i]<mid)or((b[i]=mid)and(d[i]<m1)) do inc(i);
while (b[j]>mid)or((b[j]=mid)and(d[j]>m1)) do dec(j);
if (i<=j) then
begin
p:=b[i]; b[i]:=b[j]; b[j]:=p;
p:=d[i]; d[i]:=d[j]; d[j]:=p;
inc(i);
dec(j);
end;
until i>j;
if l<j then qsort(l,j);
if i<r then qsort(i,r);
end;
begin
readln(n,m,o,t,x);
fillchar(f,sizeof(f),0);
fillchar(g,sizeof(g),false);
for i:=1 to t do
begin
readln(y,z);
if (f[y]<>0)and(f[z]<>0) then
begin
for j:=1 to n do if f[j]=f[z] then f[j]:=f[y];
continue;
end;
if (f[y]=0)and(f[z]=0) then begin f[y]:=y; f[z]:=f[y]; end
else begin f[y]:=f[z]+f[y]; f[z]:=f[y]; end;
end;
for i:=1 to n do for j:=1 to n do if (f[j]=f[i])and((f[j]<>0)or(i=j)) then g[i,j]:=true;
for i:=n downto 1 do
begin
c[i]:=i;
b:=a;
if i<>n then for j:=n downto i+1 do f[j]:=a[j];
d:=c;
k1:=0;
k2:=0;
if i<>n then qsort(i+1,n);
fillchar(a,sizeof(a),0);
fillchar(e,sizeof(e),0);
if i<>n then zx(i,n);
if i<>n then zhx(i,n);
e[i]:=m-k2;
a[i]:=m-k1;
j:=i;
while (e[j]=a[j])and(j<n) do inc(j);
if e[j]>a[j] then a:=e;
if a[i]<0 then
begin
for j:=n downto i+1 do a[j]:=f[j];
a[i]:=-1;
end;
end;
for i:=1 to n do write(a[i],' ');
end.

比赛:大奔的方案solution的更多相关文章

  1. 比赛:小奔的方案 solution

    题目 题目背景 有一个著名的题目: 五个海盗抢到了100个金币,每一颗都一样的大小和价值连城. 他们决定这么分: 1.抽签决定自己的号码 ------ [1.2.3.4.5] 2.首先,由1号提出分配 ...

  2. 比赛:小奔与不等四边形solution

    题目: 题目背景 有这样一道经典的数学题:已知一个四边形的边长是四个连续的正整数,求证这个四边形的面积的最大值不为整数.小奔轻松地证明了这个问题,现在问题来了,大奔要求小奔以最快的速度算出给定边长的四 ...

  3. Sqlserver 高并发和大数据存储方案

    Sqlserver 高并发和大数据存储方案 随着用户的日益递增,日活和峰值的暴涨,数据库处理性能面临着巨大的挑战.下面分享下对实际10万+峰值的平台的数据库优化方案.与大家一起讨论,互相学习提高!   ...

  4. tomcat中间件提交表单数据量过大警告处理方案

    http://www.bubuko.com/infodetail-976418.html http://www.cnblogs.com/yg_zhang/p/4248061.html tomcat中间 ...

  5. 优秀后端架构师必会知识:史上最全MySQL大表优化方案总结

    本文原作者“ manong”,原创发表于segmentfault,原文链接:segmentfault.com/a/1190000006158186 1.引言   MySQL作为开源技术的代表作之一,是 ...

  6. MySQL 大表优化方案(长文)

    当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型 ...

  7. 比赛:小奔的矩形solution

    分析: 交叉相乘,然后除以最大公因数(为了减少爆常数的可能性std做了两次,数据很大),得到的两个数相加减二就是答案 代码: var p,q,n,m,a,b,i:int64; begin readln ...

  8. 详解MySQL大表优化方案( 转)

    当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型 ...

  9. MySQL 大表优化方案探讨

    当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部署.运维的各种复杂度,一般以整型 ...

随机推荐

  1. uwp开发————换背景图片

    原文:uwp开发----换背景图片 用后台代码来实现对容器背景的切换,用本地图片作为背景. 把需要的图片素材放到Assets文件夹下 前台xaml代码如下: <Grid x:Name=" ...

  2. Mac App Store应用签名和pkg签名,查看签名

    App签名 只有用苹果颁发的证书签名的应用才能在App Store上进行销售,所以我们开发的应用必须打上签名. 签名有两种方式,一是使用Xcode,在配置里面设置签名,编译出来的app就有了签名:二是 ...

  3. Win7 访问 数据库 慢

    不让TCP/IP调谐拖累网速 在Windows Server 2008工作环境中,下载访问网络中大容量的文件内容时,我们有时会感觉到网络连接速度非常缓慢,严重的时候还会出现不能访问的现象.遭遇这类故障 ...

  4. 30443数据查询语言DQL

    5.4 SQL的数据查询功能 数据查询是数据库最常用的功能.在关系数据库中,查询操作是由SELECT语句来完成.其语法格式如下: SELECT column_expression FROM table ...

  5. 302Java_前定义

    第零章 前定义 1 介绍 1.1 简介 Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承.指针等概念,因此Java语言具有功能强大和简单易用两个特征. ...

  6. .NET平台简介

    前言: 看到一个名词:搜商(SQ),还挺有趣.讲的是在互联网时代,怎么能够快速找到自己所需信息或资源,成为一种能力,并将其提升到类似智商.情商的概念.在以后工作过程中,尽量提高自己获取.辨别.处理信息 ...

  7. Centos6 samba服务配置

    1.在阿里虚拟机中配置包源  在ecs的 /etc/yum.repos.d 创建个 alios.repo,内容如下 [alios.$releasever.base.$basearch] name=al ...

  8. Spark学习之路(八)—— Spark SQL 之 DataFrame和Dataset

    一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame AP ...

  9. Spring注解之-自定义注解

    1.自定义注解,先自定义三个水果属性的注解 元注解: java.lang.annotation提供了四种元注解,专门注解其他的注解(在自定义注解的时候,需要使用到元注解):   @Documented ...

  10. php实现redis锁机制

    <?php class Redis_lock { public static function getRedis() { $redis = new redis(); $redis->con ...