T1 kom (容斥

\((1s32M)\)

给出\(N\)个互不相同的正整数,统计共有多少对数,它们有公共的一个数字(不一定在同一位置上)

输入

第一行一个正整数 \(N (1 ≤ N ≤ 1 000 000)\).

接下来\(N\)行,每行一个正整数\([1, 10^{18}]\),

输出

一个数,表示满足条件的对数

input

3
4
20
44

output

1

input

4
32
51
123
282

output

4

 

 

 

暴力(\(18*n^2\))

枚举两个数逐位判断

 

容斥(\(1024*1024\))

发现我们只在乎有哪些数字出现过,就可以只存每个数中那些数码出现过,这样内存需要(\(1e6*10\)),发现被卡内存了,那我们可以用二进制转换一下,二进制数中第\(i\)位代表这个数中\(i\)出现过,这样每个数都可以转化成一个\(10\)位二进制数最大是\(1023\);

这下就可以用桶统计每种数有多少个(这里的种类是指出现的数码集合相同),但题目只要求一个数码相同,所以对于每个数码进行统计会重复,自然想到了容斥;

枚举一个状态\(i(i<1024)\),对于一类数\(j\)(\(i\subset j\)具体体现就是\(j|i=j\)),所有的\(j\)都包含\(i\)这个状态,假设有\(num\)个,对答案的贡献是\(num*(num-1)/2\),容斥系数就是二进制下\(i\)中\(1\)的数量;

 

枚举替代容斥(\(1024*1024\))

因为状态很少,我们可以省略容斥,可以直接枚举两个状态(\(i,j\)),如果有交集(\(i\&j!=0\)),\(ans+=num[i]*num[j]\);

 

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1000005;
int n;
int a[2050];
int x;
ll ans;
inline int read()
{
int x=0,f=1;char st=getchar();
while(st<'0'||st>'9'){if(st=='-') f=-1;st=getchar();}
while(st>='0'&&st<='9') x=x*10+st-'0',st=getchar();
return x*f;
} int main()
{
freopen("kom.in","r",stdin);
freopen("kom.out","w",stdout);
n=read();
for(int i=1;i<=n;i++)
{
x=0;char c=getchar();
while(c<'0'||c>'9')c=getchar();
while(c>='0'&&c<='9') x|=(1<<(c-'0')),c=getchar();
a[x]++;
} for(int i=1;i<1024;i++)
{
int num=0,num1=0;
for(int j=1;j<1024;j++)if((j|i)==j) num+=a[j];
for(int j=0;j<10;j++) if((i>>j)&1) num1++;
if(num1&1)
{
ans+=(ll)num*(num-1)/2;
} else
{
ans-=(ll)num*(num-1)/2;
} } printf("%lld",ans); fclose(stdin);
fclose(stdout);
return 0;
}

T2 fun (记搜

\((1s128M)\)

给出一程序(函数),输出程序运行后的结果。程序如下:

C++代码:

int fun() {
int ret = 0;
for (int a = X1; a <= Y1; ++a)
for (int b = X2; b <= Y2; ++b)
...
for (int <N-th> = XN; <N-th> <= YN; ++<N-th>)
ret = (ret + 1) % 1000000007;
return ret;
}

\(<N-th>\)表示字母表中每\(N\)个字母,$Xi \(和\)Yi$表示小于等于\(100000\)的正整数,或者表示一个循环变量(前面的)。

比如:\(X3\)可以为 \(a\),$ b\(,或者一个正整数。每一行的\)Xi and Yi$至少有一个是数。

输入

第一行一个正整数 \(N (1 ≤ N ≤ 26)\).

接下来\(N\)行,每行两个用空格隔开的量 \(Xi\ and\ Yi\),如果两个都是数字,则\(Xi ≤ Yi\).

输出

一个数字,表示程序的输出结果

2
1 2
a 3

output

5

input

3
2 3
1 2
1 a

output

10

input

3
1 2
a 3
1 b

output

11

 

 

 

蛮恶心的一道题;

就是让你数循环次数;但是有复杂的嵌套结构;

对于每一对依赖关系连一条边,我们可以得到很多树(森林),(因为每一层最多连一条边),这样的话只有父节点的取值会影响当前节点的循环次数;

我们可以在此基础上记搜;

我们发现只有根节点的左右边界都是数;

对于一个节点,在当前取值下的循环次数应是在当前取值下子节点的循环次数的,因为子节点总是有先后顺序的;

那记什么呢?我们发现当前节点会对同一边界情况搜很多次,我们记录一个\(f[i][j]\)代表\(i\)号节点,其父节点的取值是\(j\)的循环次数,其中\(j\)是左边界还是右边界是由节点自身情况决定的;

假如j是左边界可以得到

\[f[i][j]=\sum_{o=j}^{r}\prod{dfs(k,o)}
\]

\(k\)是当前节点的一个子节点,\(dfs(k,o)\)是搜第\(k\)层,其父亲取值是\(o\)的情况;

这里为什么又是加呢,很显然每个节点不同取值之间是没有影响的;

这样子可以的\(80\);

我们还可以考虑一下继承,假设我们的取值都是从小到大枚举的,那我们算取值是\(i\)时,\(i-1\)的情况已经算过了;

如果\(i\)是左边界,那\(i-1\)的情况比\(i\)多算了取值为\(i-1\)的影响,将这部分减去就可以了

如果\(i\)是右边界,那\(i-1\)的情况比\(i\)少算了取值为\(i\)的影响,将这部分加上就可以了

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=1000000007;
int n;
char ca[30],cb[30];
int a[30],b[30];
ll ans=1;
ll f[30][100005];
struct skr
{
int to,nxt;
}t[30];
int head[30],cnt;
inline int read()
{
int x=0,f=1;char st=getchar();
while(st<'0'||st>'9'){if(st=='-') f=-1;st=getchar();}
while(st>='0'&&st<='9') x=x*10+st-'0',st=getchar();
return x*f;
} inline void add(int x,int y)
{
t[++cnt].to=y;t[cnt].nxt=head[x];head[x]=cnt;
} inline ll dfs(int x,int l)
{
if(~f[x][l]) return f[x][l];
f[x][l]=0;
if(!a[x])
{
f[x][l]=0;
ll res=1;
if(l>b[x])return f[x][l]=0;
if(~f[x][l-1])
{
res=1;
for(int k=head[x];k;k=t[k].nxt)
{
res=(res*dfs(t[k].to,l-1))%mod;
}
f[x][l]=(f[x][l-1]-res+mod)%mod;
}
else
{
for(int i=l;i<=b[x];i++)
{
res=1;
for(int k=head[x];k;k=t[k].nxt)
{
res=(res*dfs(t[k].to,i))%mod;
}
f[x][l]=(f[x][l]+res)%mod;
}
} }
else
{
f[x][l]=0;
ll res=1;
if(a[x]>l)return f[x][l]=0;
if(~f[x][l-1])
{
res=1;
for(int k=head[x];k;k=t[k].nxt)
{
res=(res*dfs(t[k].to,l))%mod;
}
f[x][l]=(f[x][l-1]+res)%mod;
}
else
{
for(int i=a[x];i<=l;i++)
{
res=1;
for(int k=head[x];k;k=t[k].nxt)
{
res=(res*dfs(t[k].to,i))%mod;
}
f[x][l]=(f[x][l]+res)%mod;
}
} }
return f[x][l];
} int main()
{
freopen("fun.in","r",stdin);
freopen("fun.out","w",stdout);
n=read();
for(int i=1;i<=n;i++)
{
int x=0;
char c=getchar();
while((!('a'<=c&&c<='z'))&&(!('0'<=c&&c<='9'))) c=getchar();
if('a'<=c&&c<='z')
{
ca[i]=c;
add(c-'a'+1,i);
}
else
{
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
a[i]=x;
}
x=0;c=getchar();
while((!('a'<=c&&c<='z'))&&(!('0'<=c&&c<='9'))) c=getchar();
if('a'<=c&&c<='z')
{
cb[i]=c;
add(c-'a'+1,i);
}
else
{
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
b[i]=x;
}
}
memset(f,-1,sizeof f);
for(int i=1;i<=n;i++)
if(a[i]&&b[i])
{
f[i][0]=0;
for(int j=a[i];j<=b[i];j++)
{
ll res=1;
for(int k=head[i];k;k=t[k].nxt)
res=(res*dfs(t[k].to,j))%mod;
f[i][0]=(f[i][0]+res)%mod;
}
ans=(ans*f[i][0])%mod;
}
printf("%lld",ans);
fclose(stdin);
fclose(stdout);
return 0;
}

T3 ras (权值线段树

\((1.5s128M)\)

给定\(N\)个订单,每个订单用两个数字表示,一个表示订单交货时间,一个表示产品制作需要的时间,一个订单完成后(送货时间不计),就可收到小费,如果比规定时间提前\(K\)个时间,则可获得\(K\),注意准时送到得\(0\),迟送到就得对应的负值。(也就是订单上的时间减提交的时间),开始生产的时间为\(0\),请合理安排订单的顺序,以获得最大的小费,输出小费值。(第一问)

另外,给定\(C\)个修改,每个修改,改变一个订单,对于每次修改输出改后所有订单能得的最大小费数。

输入

第一行两个正整数N and C,表示订单数,和订单修改的次数.

接下来N行,每行两个数(Li,Ti)分别表示订单提交时间和订单制作时间。

接下来C行,每行三个数(R,L,T),依次原订单的编号,提交时间,制作时间。

Constraints:
1 ≤ N, C ≤ 200 000,
0 ≤ Li, L ≤ 100 000,
1 ≤ Ti, T ≤ 100 000,
1 ≤ R ≤ N.

输出

第一行一个数,表示最开始能获得的最大小费。

接下来C行,每行一个数,表示修改这个订单后能获得的最大小费。

input

3 2
10 2
6 5
4 3
1 6 1
3 0 10

output

3
2
-11

input

4 2
3 2
0 3
4 3
4 1
3 0 4
1 4 5

output

-8
-13
-18

input

6 7
17 5
26 4
5 5
12 4
8 1
18 2
3 31 3
4 11 5
4 19 3
5 23 2
6 15 1
5 19 1
3 10 4

output

27
59
56
69
78
81
82
58

对于第一个例子,原始订单完成的顺序\((1, 3, 2)\). 第一个订单完成时 \(t = 2\),第三个\(t = 5\),第二个 \(t = 10\).所以第一个订单可获\(8\)个小费,第二个获\(-1\),第\(3\)个获\(-4\))所以总数为\(3\).

第一次改变后,订单完成顺序不变,得小费为 \(5, 0, and -3\),第二次改变后,最优顺序为\((1, 2, 3)\), 小费为 \(5\),\(0\),$ and$ \(-16\)

 

 

 

每一个订单对答案的贡献是“截止时间-实际制作时间”,将每一个实际制作时间拆开,发现每一个订单的制作时间的影响是时间乘它后面的订单数+自己;

那么答案可以写成

\[\sum{l-t*(n-i+1)}
\]

我们将截止时间单独统计,将制作时间由小到大排序,以这样的顺序制作是最优的,因为这样让等待时间降至最小;

 

 

但问题涉及到了修改订单,我们考虑当前状态与上一个状态的差值;

修改一个点其实相当于把原值删掉再加入一个新值;

其实删除与加入是完全相反的,我们只讨论删除;

由于涉及到大小顺序,我们可以维护一个权值线段树(权值树状数组)

维护当前节点出现的次数和出现这么多次的总和,线段树分别维护两个值得和;

当删除某个订单时,先将它的\(l\)删去;

再删除某个值\(t\)时,先将对应值出现次数\(-1\),对应值的总和\(-t\);

再考虑少减了多少,

首先是它自己没有了,它原本的贡献是\(t*(n-i+1)\)

我们区间查询出有多少个比\(t\)小,假设是\(g\)个,答案应当加上\(t*(n-g)\)

其次是对其他值的影响,现在\(n\)变成了\(n-1\),而比\(t\)大的部分排名也减少了\(1\),所以这部分没有变,但比\(t\)小的就会少减一次,所以答案应该加上比\(t\)少了的元素的和

添加相反

 

 

#include<bits/stdc++.h>
#define ll long long
#define ls p<<1
#define rs p<<1|1
#define l(p) a[p].l
#define r(p) a[p].r
using namespace std; const int N=200005; int n,zc[N],num[N],c;
ll tot;
struct book
{
int l,t;
}b[N];
struct ST
{
ll sum;
int dat;
int l,r;
}a[N<<1];
inline bool cmp(ll x,ll y)
{
return b[x].t<b[y].t;
} inline int read()
{
int x=0,f=1;char st=getchar();
while(st<'0'||st>'9'){if(st=='-') f=-1;st=getchar();}
while(st>='0'&&st<='9') x=x*10+st-'0',st=getchar();
return x*f;
} inline void update(int p)
{
a[p].dat=a[ls].dat+a[rs].dat;
a[p].sum=a[ls].sum+a[rs].sum;
} inline void build(int p,int l,int r)
{
l(p)=l;r(p)=r;
if(l==r)
{
a[p].dat=num[l];
a[p].sum=num[l]*l;
return ;
}
int mid=l+r>>1;
build(ls,l,mid);
build(rs,mid+1,r);
update(p);
}
inline void change(int p,int d,int x)
{
if(l(p)==r(p))
{
a[p].dat+=x;
a[p].sum+=(ll)x*l(p);
return ;
}
int mid=l(p)+r(p)>>1;
if(d<=mid) change(ls,d,x);
else change(rs,d,x);
update(p);
} inline ll ask(int p,int l,int r)
{
if(l(p)>=l&&r(p)<=r) return a[p].sum;
int mid=l(p)+r(p)>>1;
ll val=0;
if(l<=mid) val+=ask(ls,l,r);
if(r>mid) val+=ask(rs,l,r);
return val;
} inline int asknum(int p,int l,int r)
{
if(l(p)>=l&&r(p)<=r) return a[p].dat;
int mid=l(p)+r(p)>>1;
int val=0;
if(l<=mid) val+=asknum(ls,l,r);
if(r>mid) val+=asknum(rs,l,r);
return val;
}
int main()
{
freopen("ras.in","r",stdin);
freopen("ras.out","w",stdout);
n=read();c=read();
for(int i=1;i<=n;i++)
{
b[i].l=read();b[i].t=read();
tot+=b[i].l,zc[i]=b[i].t;
num[b[i].t]++;
}
sort(zc+1,zc+1+n);
build(1,1,100000);
for(int i=1;i<=n;i++)
tot-=(ll)zc[i]*(n-i+1);
printf("%lld\n",tot);
for(int i=1;i<=c;i++)
{
int r=read(),l=read(),t=read(); tot-=b[r].l;
change(1,b[r].t,-1);
tot+=ask(1,1,b[r].t-1);
int g=asknum(1,1,b[r].t-1);
tot+=(ll)(n-g)*b[r].t; b[r].l=l;b[r].t=t;
tot+=l; change(1,b[r].t,1);
tot-=ask(1,1,b[r].t-1);
g=asknum(1,1,b[r].t-1);
tot-=(ll)(n-g)*b[r].t; printf("%lld\n",tot);
} fclose(stdin);
fclose(stdout);
return 0;
}

Test1016的更多相关文章

  1. NOIp2018集训test-10-16 (bike day2)

    “毕姥爷:今天的题好简单啊,你们怎么考得这么烂啊,如果是noip你们就凉透了啊“ 今天的题难度应该是3.2.1递减的,但是我不知道哪根筋没搭对,平时我最多1h多就弃题了,今天硬生生写了2h20min的 ...

  2. 数据文件个数大于1024时ORACLE数据文件FILE_ID及RELATIVE_FNO的变化示例

    通过ROWID计算数据块的相关信息:  --详见: 数据文件头块保留大小.ROWID.数据文件最大大小等数据库限制的说明 根据small file tablespace的ROWID,计算出表空间.数据 ...

随机推荐

  1. Docker从入门到掉坑(三):容器太多,操作好麻烦

    前边的两篇文章里面,我们讲解了基于docker来部署基础的SpringBoot容器,如果阅读本文之前没有相关基础的话,可以回看之前的教程. Docker 从入门到掉坑 Docker从入门到掉坑(二): ...

  2. 🙈羞,Spring Bean 初始化/销毁竟然有这么多姿势

    文章来源:http://1t.click/bfHN 一.前言 日常开发过程有时需要在应用启动之后加载某些资源,或者在应用关闭之前释放资源.Spring 框架提供相关功能,围绕 Spring Bean ...

  3. web前端开发面试题(Vue.js)

    1.active-class是哪个组件的属性?嵌套路由怎么定义? 答:vue-router模块的router-link组件. 2.怎么定义vue-router的动态路由?怎么获取传过来的动态参数?  ...

  4. 读写分离很难吗?springboot结合aop简单就实现了

    目录 前言 环境部署 开始项目 注意 參考: 前言 入职新公司到现在也有一个月了,完成了手头的工作,前几天终于有时间研究下公司旧项目的代码.在研究代码的过程中,发现项目里用到了Spring Aop来实 ...

  5. SSM框架整合 详细步骤(备注) 附源码

    整合思路 将工程的三层结构中的JavaBean分别使用Spring容器(通过XML方式)进行管理. 整合持久层mapper,包括数据源.会话工程及mapper代理对象的整合: 整合业务层Service ...

  6. 【计算机网络】你真的了解HTTP(HTTPS)协议的这12个知识点吗

    HTTP协议 1. 介绍一下OSI七层参考模型和TCP/IP五层模型 1.1 OSI七层模型 1.2 TCP/IP五层模型 1.3 各层的设备 [各层设备] 1.4 各层对应协议 2. HTTP协议和 ...

  7. ctf线下赛中检测外来IP的shell脚本

    该脚本可用于ctf线下赛中,用来检测攻击IP的接入,及时做出响应. #!/bin/bash #写自己队的ip ipA="172.22.60.230" ipB="172.2 ...

  8. centos7安装samba

    samba是一个实现smb协议的开源软件,为局域网内的不同计算机之间提供文件和打印机共享服务. 1.安装yum groupinstall “file-server” -y 2.配置cp /etc/sa ...

  9. json注记

    Javascript支持的转换方式  eval('(' + jsonstr + ')'); //可以将json字符串转换成json对象,注意需要在json字符外包裹一对小括号 注:ie8(兼容模式), ...

  10. Hyperledger Fabric手动生成CA证书搭建Fabric网络

    之前介绍了使用官方脚本自动化启动一个Fabric网络,并且所有的证书都是通过官方的命令行工具cryptogen直接生成网络中的所有节点的证书.在开发环境可以这么简单进行,但是生成环境下还是需要我们自定 ...