Go中http超时问题的排查
背景
最新有同事反馈,服务间有调用超时的现象,在业务高峰期发生的概率和次数比较高。从日志中调用关系来看,有2个调用链经常发生超时问题。
问题1: A服务使用 http1.1 发送请求到 B 服务超时。
问题2: A服务使用一个轻量级http-sdk(内部http2.0) 发送请求到 C 服务超时。
Golang给出的报错信息时:
Post http://host/v1/xxxx: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)
通知日志追踪ID来排查,发现有的请求还没到服务方就已经超时。
有些已经到服务方了,但也超时。
这里先排查的是问题2,下面是过程。
排查
推测
调用方设置的http请求超时时间是1s。
请求已经到服务端了还超时的原因,可能是:
服务方响应慢。 通过日志排查确实有部分存在。
客户端调用花了990ms,到服务端只剩10ms,这个肯定会超时。
请求没到服务端超时的原因,可能是:
golang CPU调度不过来。通过cpu监控排除这个可能性
golang 网络库原因。重点排查
排查方法:
本地写个测试程序,1000并发调用测试环境的C服务:
n := 1000
var waitGroutp = sync.WaitGroup{}
waitGroutp.Add(n)
for i := 0; i < n; i++ {
go func(x int) {
httpSDK.Request()
}
}
waitGroutp.Wait()
报错:
too many open files // 这个错误是笔者本机ulimit太小的原因,可忽略
net/http: request canceled (Client.Timeout exceeded while awaiting headers)
并发数量调整到500继续测试,还是报同样的错误。
连接超时
本地如果能重现的问题,一般来说比较好查些。
开始跟golang的源码,下面是创建httpClient的代码,这个httpClient是全局复用的。
func createHttpClient(host string, tlsArg *TLSConfig) (*http.Client, error) {
httpClient := &http.Client{
Timeout: time.Second,
}
tlsConfig := &tls.Config{InsecureSkipVerify: true}
transport := &http.Transport{
TLSClientConfig: tlsConfig,
MaxIdleConnsPerHost: 20,
}
http2.ConfigureTransport(transport)
return httpClient, nil
}
// 使用httpClient
httpClient.Do(req)
跳到net/http/client.go 的do方法
func (c *Client) do(req *Request) (retres *Response, reterr error) {
if resp, didTimeout, err = c.send(req, deadline); err != nil {
}
}
继续进 send 方法,实际发送请求是通过 RoundTrip 函数。
func send(ireq *Request, rt RoundTripper, deadline time.Time) (resp *Response, didTimeout func() bool, err error) {
rt.RoundTrip(req)
}
send 函数接收的 rt 参数是个 inteface,所以要从 http.Transport 进到 RoundTrip 函数。
其中log.Println("getConn time", time.Now().Sub(start), x)
是笔者添加的日志,为了验证创建连接耗时。
var n int
// roundTrip implements a RoundTripper over HTTP.
func (t *Transport) roundTrip(req *Request) (*Response, error) {
// 检查是否有注册http2,有的话直接使用http2的RoundTrip
if t.useRegisteredProtocol(req) {
altProto, _ := t.altProto.Load().(map[string]RoundTripper)
if altRT := altProto[scheme]; altRT != nil {
resp, err := altRT.RoundTrip(req)
if err != ErrSkipAltProtocol {
return resp, err
}
}
}
for {
//n++
// start := time.Now()
pconn, err := t.getConn(treq, cm)
// log.Println("getConn time", time.Now().Sub(start), x)
if err != nil {
t.setReqCanceler(req, nil)
req.closeBody()
return nil, err
}
}
}
结论:加了日志跑下来,确实有大量的getConn time
超时。
疑问
这里有2个疑问:
为什么Http2没复用连接,反而会创建大量连接?
创建连接为什么会越来越慢?
继续跟 getConn 源码, getConn第一步会先获取空闲连接,因为这里用的是http2,可以不用管它。
追加耗时日志,确认是dialConn耗时的。
func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (*persistConn, error) {
if pc, idleSince := t.getIdleConn(cm); pc != nil {
}
//n++
go func(x int) {
// start := time.Now()
// defer func(x int) {
// log.Println("getConn dialConn time", time.Now().Sub(start), x)
// }(n)
pc, err := t.dialConn(ctx, cm)
dialc <- dialRes{pc, err}
}(n)
}
继续跟dialConn函数,里面有2个比较耗时的地方:
连接建立,三次握手。
tls握手的耗时,见下面http2章节的dialConn源码。
分别在dialConn函数中 t.dial 和 addTLS 的位置追加日志。
可以看到,三次握手的连接还是比较稳定的,后面连接的在tls握手耗时上面,耗费将近1s。
2019/10/23 14:51:41 DialTime 39.511194ms https.Handshake 1.059698795s
2019/10/23 14:51:41 DialTime 23.270069ms https.Handshake 1.064738698s
2019/10/23 14:51:41 DialTime 24.854861ms https.Handshake 1.0405369s
2019/10/23 14:51:41 DialTime 31.345886ms https.Handshake 1.076014428s
2019/10/23 14:51:41 DialTime 26.767644ms https.Handshake 1.084155891s
2019/10/23 14:51:41 DialTime 22.176858ms https.Handshake 1.064704515s
2019/10/23 14:51:41 DialTime 26.871087ms https.Handshake 1.084666172s
2019/10/23 14:51:41 DialTime 33.718771ms https.Handshake 1.084348815s
2019/10/23 14:51:41 DialTime 20.648895ms https.Handshake 1.094335678s
2019/10/23 14:51:41 DialTime 24.388066ms https.Handshake 1.084797011s
2019/10/23 14:51:41 DialTime 34.142535ms https.Handshake 1.092597021s
2019/10/23 14:51:41 DialTime 24.737611ms https.Handshake 1.187676462s
2019/10/23 14:51:41 DialTime 24.753335ms https.Handshake 1.161623397s
2019/10/23 14:51:41 DialTime 26.290747ms https.Handshake 1.173780655s
2019/10/23 14:51:41 DialTime 28.865961ms https.Handshake 1.178235202s
结论:第二个疑问的答案就是tls握手耗时
http2
为什么Http2没复用连接,反而会创建大量连接?
前面创建http.Client 时,是通过http2.ConfigureTransport(transport) 方法,其内部调用了configureTransport:
func configureTransport(t1 *http.Transport) (*Transport, error) {
// 声明一个连接池
// noDialClientConnPool 这里很关键,指明连接不需要dial出来的,而是由http1连接升级而来的
connPool := new(clientConnPool)
t2 := &Transport{
ConnPool: noDialClientConnPool{connPool},
t1: t1,
}
connPool.t = t2
// 把http2的RoundTripp的方法注册到,http1上transport的altProto变量上。
// 当请求使用http1的roundTrip方法时,检查altProto是否有注册的http2,有的话,则使用
// 前面代码的useRegisteredProtocol就是检测方法
if err := registerHTTPSProtocol(t1, noDialH2RoundTripper{t2}); err != nil {
return nil, err
}
// http1.1 升级到http2的后的回调函数,会把连接通过 addConnIfNeeded 函数把连接添加到http2的连接池中
upgradeFn := func(authority string, c *tls.Conn) http.RoundTripper {
addr := authorityAddr("https", authority)
if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
go c.Close()
return erringRoundTripper{err}
} else if !used {
go c.Close()
}
return t2
}
if m := t1.TLSNextProto; len(m) == 0 {
t1.TLSNextProto = map[string]func(string, *tls.Conn) http.RoundTripper{
"h2": upgradeFn,
}
} else {
m["h2"] = upgradeFn
}
return t2, nil
}
TLSNextProto 在 http.Transport-> dialConn 中使用。调用upgradeFn函数,返回http2的RoundTripper,赋值给alt。
alt会在http.Transport 中 RoundTripper 内部检查调用。
func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (*persistConn, error) {
pconn := &persistConn{
t: t,
}
if cm.scheme() == "https" && t.DialTLS != nil {
// 没有自定义DialTLS方法,不会走到这一步
} else {
conn, err := t.dial(ctx, "tcp", cm.addr())
if err != nil {
return nil, wrapErr(err)
}
pconn.conn = conn
if cm.scheme() == "https" {
// addTLS 里进行 tls 握手,也是建立新连接最耗时的地方。
if err = pconn.addTLS(firstTLSHost, trace); err != nil {
return nil, wrapErr(err)
}
}
}
if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok {
// next 调用注册的升级函数
return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil
}
}
return pconn, nil
}
结论:
当没有连接时,如果此时来一大波请求,会创建n多http1.1的连接,进行升级和握手,而tls握手随着连接增加而变的非常慢。
解决超时
上面的结论并不能完整解释,复用连接的问题。因为服务正常运行的时候,一直都有请求的,连接是不会断开的,所以除了第一次连接或网络原因断开,正常情况下都应该复用http2连接。
通过下面测试,可以复现有http2的连接时,还是会创建N多新连接:
sdk.Request() // 先请求一次,建立好连接,测试是否一直复用连接。
time.Sleep(time.Second)
n := 1000
var waitGroutp = sync.WaitGroup{}
waitGroutp.Add(n)
for i := 0; i < n; i++ {
go func(x int) {
sdk.Request()
}
}
waitGroutp.Wait()
所以还是怀疑http1.1升级导致,这次直接改成使用 http2.Transport
httpClient.Transport = &http2.Transport{
TLSClientConfig: tlsConfig,
}
改了后,测试发现没有报错了。
为了验证升级模式和直接http2模式的区别。 这里先回到升级模式中的 addConnIfNeeded 函数中,其会调用addConnCall 的 run 函数:
func (c *addConnCall) run(t *Transport, key string, tc *tls.Conn) {
cc, err := t.NewClientConn(tc)
}
run参数中传入的是http2的transport。
整个解释是http1.1创建连接后,会把传输层连接,通过addConnIfNeeded->run->Transport.NewClientConn构成一个http2连接。 因为http2和http1.1本质都是应用层协议,传输层的连接都是一样的。
然后在newClientConn连接中加日志。
func (t *Transport) newClientConn(c net.Conn, singleUse bool) (*ClientConn, error) {
// log.Println("http2.newClientConn")
}
结论:
升级模式下,会打印很多http2.newClientConn,根据前面的排查这是讲的通的。而单纯http2模式下,也会创建新连接,虽然很少。
并发连接数
那http2模式下什么情况下会创建新连接呢?
这里看什么情况下http2会调用 newClientConn。回到clientConnPool中,dialOnMiss在http2模式下为true,getStartDialLocked 里会调用dial->dialClientConn->newClientConn。
func (p *clientConnPool) getClientConn(req *http.Request, addr string, dialOnMiss bool) (*ClientConn, error) {
p.mu.Lock()
for _, cc := range p.conns[addr] {
if st := cc.idleState(); st.canTakeNewRequest {
if p.shouldTraceGetConn(st) {
traceGetConn(req, addr)
}
p.mu.Unlock()
return cc, nil
}
}
if !dialOnMiss {
p.mu.Unlock()
return nil, ErrNoCachedConn
}
traceGetConn(req, addr)
call := p.getStartDialLocked(addr)
p.mu.Unlock()
}
有连接的情况下,canTakeNewRequest 为false,也会创建新连接。看看这个变量是这么得来的:
func (cc *ClientConn) idleStateLocked() (st clientConnIdleState) {
if cc.singleUse && cc.nextStreamID > 1 {
return
}
var maxConcurrentOkay bool
if cc.t.StrictMaxConcurrentStreams {
maxConcurrentOkay = true
} else {
maxConcurrentOkay = int64(len(cc.streams)+1) < int64(cc.maxConcurrentStreams)
}
st.canTakeNewRequest = cc.goAway == nil && !cc.closed && !cc.closing && maxConcurrentOkay &&
int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32
// if st.canTakeNewRequest == false {
// log.Println("clientConnPool", cc.maxConcurrentStreams, cc.goAway == nil, !cc.closed, !cc.closing, maxConcurrentOkay, int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32)
// }
st.freshConn = cc.nextStreamID == 1 && st.canTakeNewRequest
return
}
为了查问题,这里加了详细日志。测试下来,发现是maxConcurrentStreams 超了,canTakeNewRequest才为false。
在http2中newClientConn的初始化配置中, maxConcurrentStreams 默认为1000:
maxConcurrentStreams: 1000, // "infinite", per spec. 1000 seems good enough.
但实际测下来,发现500并发也会创建新连接。继续追查有设置这个变量的地方:
func (rl *clientConnReadLoop) processSettings(f *SettingsFrame) error {
case SettingMaxConcurrentStreams:
cc.maxConcurrentStreams = s.Val
//log.Println("maxConcurrentStreams", s.Val)
}
运行测试,发现是服务传过来的配置,值是250。
结论: 服务端限制了单连接并发连接数,超了后就会创建新连接。
服务端限制
在服务端框架中,找到ListenAndServeTLS函数,跟下去->ServeTLS->Serve->setupHTTP2_Serve->onceSetNextProtoDefaults_Serve->onceSetNextProtoDefaults->http2ConfigureServer。
查到new(http2Server)的声明,因为web框架即支持http1.1 也支持http2,所以没有指定任何http2的相关配置,都使用的是默认的。
// Server is an HTTP/2 server.
type http2Server struct {
// MaxConcurrentStreams optionally specifies the number of
// concurrent streams that each client may have open at a
// time. This is unrelated to the number of http.Handler goroutines
// which may be active globally, which is MaxHandlers.
// If zero, MaxConcurrentStreams defaults to at least 100, per
// the HTTP/2 spec's recommendations.
MaxConcurrentStreams uint32
}
从该字段的注释中看出,http2标准推荐至少为100,golang中使用默认变量 http2defaultMaxStreams, 它的值为250。
真相
上面的步骤,更多的是为了记录排查过程和源码中的关键点,方便以后类似问题有个参考。
简化来说:
- 调用方和服务方使用http1.1升级到http2的模式进行通讯
- 服务方http2Server限制单连接并发数是250
- 当并发超过250,比如1000时,调用方就会并发创建750个连接。这些连接的tls握手时间会越来越长。而调用超时只有1s,所以导致大量超时。
- 这些连接有些没到服务方就超时,有些到了但服务方还没来得及处理,调用方就取消连接了,也是超时。
并发量高的情况下,如果有网络断开,也会导致这种情况发送。
重试
A服务使用的轻量级http-sdk有一个重试机制,当检测到是一个临时错误时,会重试2次。
Temporary() bool // Is the error temporary?
而这个超时错误,就属于临时错误,从而放大了这种情况发生。
解决办法
不是升级模式的http2即可。
httpClient.Transport = &http2.Transport{
TLSClientConfig: tlsConfig,
}
为什么http2不会大量创建连接呢?
这是因为http2创建新连接时会加锁,后面的请求解锁后,发现有连接没超过并发数时,直接复用连接即可。所以没有这种情况,这个锁在 clientConnPool.getStartDialLocked 源码中。
问题1
问题1: A服务使用 http1.1 发送请求到 B 服务超时。
问题1和问题2的原因一样,就是高并发来的情况下,会创建大量连接,连接的创建会越来越慢,从而超时。
这种情况没有很好的办法解决,推荐使用http2。
如果不能使用http2,调大MaxIdleConnsPerHost参数,可以缓解这种情况。默认http1.1给每个host只保留2个空闲连接,来个1000并发,就要创建998新连接。
该调整多少,可以视系统情况调整,比如50,100。
Go中http超时问题的排查的更多相关文章
- 如何解决python中urlopen超时问题
看代码: 利用urlopen中的超时参数设立一个循环 while True: try: page = urllib.request.urlopen(url, timeout=3) break exce ...
- 从mina中学习超时程序编写
从mina中学习超时程序编写 在很多情况下,程序需要使用计时器定,在指定的时间内检查连接过期.例如,要实现一个mqtt服务,为了保证QOS,在服务端发送消息后,需要等待客户端的ack,确保客户端接收到 ...
- PHP socket 编程中的超时设置
PHP socket 编程中的超时设置.网上找了半天也没找到.贴出来分享之:设置$socket 发送超时1秒,接收超时3秒: $socket = socket_create(AF_INET,SOCK_ ...
- nginx中的超时配置
nginx.conf配置文件中timeout超时时间设置 client_header_timeout 语法 client_header_timeout time默认值 60s上下文 http serv ...
- Linux系统中的硬件问题如何排查?(6)
Linux系统中的硬件问题如何排查?(6) 2013-03-27 10:32 核子可乐译 51CTO.com 字号:T | T 在Linux系统中,对于硬件故障问题的排查可能是计算机管理领域最棘手的工 ...
- Linux系统中的硬件问题如何排查?(5)
Linux系统中的硬件问题如何排查?(5) 2013-03-27 10:32 核子可乐译 51CTO.com 字号:T | T 在Linux系统中,对于硬件故障问题的排查可能是计算机管理领域最棘手的工 ...
- Linux系统中的硬件问题如何排查?(4)
Linux系统中的硬件问题如何排查?(4) 2013-03-27 10:32 核子可乐译 51CTO.com 字号:T | T 在Linux系统中,对于硬件故障问题的排查可能是计算机管理领域最棘手的工 ...
- Linux系统中的硬件问题如何排查?(3)
Linux系统中的硬件问题如何排查?(3) 2013-03-27 10:32 核子可乐译 51CTO.com 字号:T | T 在Linux系统中,对于硬件故障问题的排查可能是计算机管理领域最棘手的工 ...
- Linux系统中的硬件问题如何排查?(2)
Linux系统中的硬件问题如何排查?(2) 2013-03-27 10:32 核子可乐译 51CTO.com 字号:T | T 在Linux系统中,对于硬件故障问题的排查可能是计算机管理领域最棘手的工 ...
随机推荐
- thinkphp将上传的临时文件移动到指定目录
thinkphp将上传的临时文件移动到指定目录 新建common.php文件 <?phpuse think\facade\Env; /** 移动上传的临时文件 * * @img_dir stri ...
- pyenv的安装和简单使用
centos7.4 python2.7 安装pyenv需要的依赖 yum -y install gcc zlib-devel bzip2-devel openssl-devel ncurses-d ...
- Splitting into digits CodeForce#1104A
题目链接:Splitting into digits 题目原文 Vasya has his favourite number
- 『王霸之路』从0.1到2.0一文看尽TensorFlow奋斗史
0 序篇 2015年11月,Google正式发布了Tensorflow的白皮书并开源TensorFlow 0.1 版本. 2017年02月,Tensorflow正式发布了1.0.0版本,同时也标志 ...
- android系统中对ffmpeg封装最好的免费SDK
android系统中对ffmpeg封装最好的免费SDK; 无论个人还是公司,都免费商用, 欢迎下载. https://github.com/LanSoSdk/LanSoEditor_common 可能 ...
- IDEA 学习笔记之 Spark/SBT项目开发
Spark/SBT项目开发: 下载Scala SDK 下载SBT 配置IDEA SBT:(如果不配置,就会重新下载SBT, 非常慢,因为以前我已经下过了,所以要配置为过去使用的SBT) 新建立SBT项 ...
- Laravel Entrust 权限管理扩展包的使用笔记
简介 Entrust 是一个简洁而灵活的基于角色进行权限管理的 Laravel 扩展包.针对 Laravel 5,官方推荐的安装版本是 5.2.x-dev.它的详细使用方法请查看 Entrust Gi ...
- JVM(一)内存分配
方法区: ①存储被虚拟机加载的类信息.常量.静态变量.即时编译器编译后的代码数据 ②又称为永久代,仅对于Hotspot来讲,JRockit和IBM J9里面没有永久代的概念,1.8以后是元空间,直接使 ...
- ssm配置文件
mybatis配置文件SqlMapConfig.xml <?xml version="1.0" encoding="UTF-8"?> <!DO ...
- Python中的option Parser
一般来说,Python中有两个内建的模块用于处理命令行参数: 一个是 getopt,<Deep in python>一书中也有提到,只能简单处理 命令行参数: 另一个是 optparse, ...