题目网址:http://poj.org/problem?id=1753

题目:

Flip Game

Description

Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the other one is black and each piece is lying either it's black or white side up. Each round you flip 3 to 5 pieces, thus changing the color of their upper side from black to white and vice versa. The pieces to be flipped are chosen every round according to the following rules: 
  1. Choose any one of the 16 pieces.
  2. Flip the chosen piece and also all adjacent pieces to the left, to the right, to the top, and to the bottom of the chosen piece (if there are any).

Consider the following position as an example:

bwbw 
wwww 
bbwb 
bwwb 
Here "b" denotes pieces lying their black side up and "w" denotes pieces lying their white side up. If we choose to flip the 1st piece from the 3rd row (this choice is shown at the picture), then the field will become:

bwbw 
bwww 
wwwb 
wwwb 
The goal of the game is to flip either all pieces white side up or all pieces black side up. You are to write a program that will search for the minimum number of rounds needed to achieve this goal. 

Input

The input consists of 4 lines with 4 characters "w" or "b" each that denote game field position.

Output

Write to the output file a single integer number - the minimum number of rounds needed to achieve the goal of the game from the given position. If the goal is initially achieved, then write 0. If it's impossible to achieve the goal, then write the word "Impossible" (without quotes).

Sample Input

bwwb
bbwb
bwwb
bwww

Sample Output

4

思路:

棋盘只有4*4即16格,我们把这16格的白棋黑棋状态分别用1,0表示,就可以用十进制的0——(2^16-1即65535)表示所有情况。利用0^1=1,1^1=0,0^0=0即无论0,1与0做^运算都等于其本身,无论0,1与1做^运算都等于另一个数的特性,我们将翻转棋子操作,变成将选定棋子和四周的棋子的状态^1,其余棋子状态^0。再用bfs进行搜索,用vis数组标记当前棋盘情况是否出现过,未出现则将当前情况入队,反之则不入。

代码:
 #include <cstdio>
#include <vector>
#include <queue>
using namespace std;
int vis[];
int mp[]={//预处理,事先算出翻转16个棋子 分别对应的"^"操作数
,,,,
,,,,
,,,,
,,,
};
char chess[][];
vector<int>v;
queue<int>q;
int change(){//将棋盘的初始状态压缩
int x=v[];
for (int i=; i<v.size(); i++) {
x=(x<<)+v[i];
}
return x;
}
int bfs(int v){
vis[v]=;
q.push(v);
while (!q.empty()) {
int x=q.front();q.pop();
if(x== || x== ) return vis[x]-;//x==0时,棋子全为黑面朝上,x==65535时,棋子全为白面朝上。vis数组保存的是当前步数+1
for (int i=; i<; i++) {//分别翻转16个棋子
int xt=x^mp[i];
if(vis[xt]) continue;
vis[xt]=vis[x]+;
q.push(xt);
}
}
return -;
}
int main(){
for (int i=; i<; i++) {
gets(chess[i]);
for (int j=; j<; j++) {
if(chess[i][j]=='b') v.push_back();
else v.push_back();
}
}
int x=bfs(change());
if(x!=-) printf("%d\n",x);
else printf("Impossible\n");
return ;
}

POJ 1753 Flip Game(状态压缩+BFS)的更多相关文章

  1. POJ 1753 Flip Game 状态压缩,暴力 难度:1

    Flip Game Time Limit: 1000MS  Memory Limit: 65536K  Total Submissions: 4863  Accepted: 1983 Descript ...

  2. POJ - 1324 Holedox Moving (状态压缩+BFS/A*)

    题目链接 有一个n*m(1<=n,m<=20)的网格图,图中有k堵墙和有一条长度为L(L<=8)的蛇,蛇在移动的过程中不能碰到自己的身体.求蛇移动到点(1,1)所需的最小步数. 显然 ...

  3. POJ 3411 Paid Roads (状态压缩+BFS)

    题意:有n座城市和m(1<=n,m<=10)条路.现在要从城市1到城市n.有些路是要收费的,从a城市到b城市,如果之前到过c城市,那么只要付P的钱, 如果没有去过就付R的钱.求的是最少要花 ...

  4. poj 1753 Flip Game 枚举(bfs+状态压缩)

    题目:http://poj.org/problem?id=1753 因为粗心错了好多次……,尤其是把1<<15当成了65535: 参考博客:http://www.cnblogs.com/k ...

  5. 枚举 POJ 1753 Flip Game

    题目地址:http://poj.org/problem?id=1753 /* 这题几乎和POJ 2965一样,DFS函数都不用修改 只要修改一下change规则... 注意:是否初始已经ok了要先判断 ...

  6. 胜利大逃亡(续)(状态压缩bfs)

    胜利大逃亡(续) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. poj 1753 Flip Game(bfs状态压缩 或 dfs枚举)

    Description Flip game squares. One side of each piece is white and the other one is black and each p ...

  8. POJ 1753 Flip Game (状态压缩 bfs+位运算)

    Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 square ...

  9. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

随机推荐

  1. Dubbo Spring Cloud 之 HTTP 实战

    上一篇文章<Spring Cloud Alibaba | Dubbo 与 Spring Cloud 完美结合>我们介绍了Dubbo Spring Cloud的基本使用,使用的服务中心为Sp ...

  2. IBM MQ reason code list

    The reason code parameter (Reason) is a qualification to the completion code parameter (CompCode). I ...

  3. linux 操作系统级别监控 vmstat/dstat 命令

    vmstat命令综合了CPU.进程.内存.磁盘IO等信息 命令:vmstat 1       表示vmstat每2秒采集数据,一直采集,直到我结束程序 vmstat 2 1    表示每个两秒采集一次 ...

  4. ES6中的迭代器、Generator函数以及Generator函数的异步操作

    最近在写RN相关的东西,其中涉及到了redux-saga ,saga的实现原理就是ES6中的Generator函数,而Generator函数又和迭代器有着密不可分的关系.所以本篇博客先学习总结了ite ...

  5. Java优化策略小积累

    1.尽量避免大量使用静态变量 package com.cfang.jvm; public class Test2 { private static Test1 test1 = new Test1(); ...

  6. 记一个复杂组件(Filter)的从设计到开发

    此文前端框架使用 rax,全篇代码暂未开源(待开源) 原文链接地址:Nealyang/PersonalBlog 前言 貌似在面试中,你如果设计一个 react/vue 组件,貌似已经是司空见惯的问题了 ...

  7. .Net Reactor混淆导致匿名类处理出现的问题处理分析

    .Net Reactor 是一款比较不错的混淆工具,比VS自带的那个好用很多,一直以来也陪伴着我们的成长,虽然没有完美的混淆工具,不过也算还是不错的,至少能在一定程度上对DLL进行一定的保护处理. 不 ...

  8. 对于java的Sting.intern()的一些注意

    今天翻看书时遇到了这样一个问题,对于String.intern()方法又有了一些认识和看法.首先我们看它的api 大意就是intern()方法会在常量池中记录首次出现的实例引用,但是在jdk1.6中却 ...

  9. THINKPHP 中关联查询(多表查询)

    THINKPHP 中关联查询(多表查询)可以使用 table() 方法或和join方法,请看示例: 1.Table方法:定义要操作的数据表名称,可以动态改变当前操作的数据表名称,需要写数据表的全名,包 ...

  10. 触电JavaScript-如何将json 二维数组转换为 JSON object

    最近因为项目中使用的是 ActiveReports .Net 产品,因为他们最近新出了  ActiveReports JS 版本,所以内心有点痒痒,想试试这个纯前端版本报表控件到底如何,毕竟我们项目有 ...