快速排序方法——python实现
参考博文:http://www.cnblogs.com/jingmoxukong/p/4302891.html
快速排序是一种交换排序。
快速排序由C. A. R. Hoare在1962年提出。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分:分割点左边都是比它小的数,右边都是比它大的数。
它的基本流程是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
算法结构如图所示:
图中,演示了快速排序的处理过程:
初始状态为一组无序的数组:2、4、5、1、3。
经过以上操作步骤后,完成了第一次的排序,得到新的数组:1、2、5、4、3。
新的数组中,以2为分割点,左边都是比2小的数,右边都是比2大的数。
因为2已经在数组中找到了合适的位置,所以不用再动。
2左边的数组只有一个元素1,所以显然不用再排序,位置也被确定。(注:这种情况时,left指针和right指针显然是重合的。因此在代码中,我们可以通过设置判定条件left必须小于right,如果不满足,则不用排序了)。
而对于2右边的数组5、4、3,设置left指向5,right指向3,开始继续重复图中的一、二、三、四步骤,对新的数组进行排序。
在此采用python语言实现,代码如下:
example = [1,3,4,5,2,6,9,7,8,0] a = 0
b = len(example)-1 def quickSort(number,head,tail):
if (head<tail):
base = division(number,head,tail)
#print(number[base],"\n")
quickSort(number,head,base-1)
quickSort(number,base+1,tail)
else:
print(number) def division(number,head,tail):
base = number[head]
while(head<tail):
while(head<tail and number[tail]>=base):
tail-=1
number[head] = number[tail]
while (head<tail and number[head]<=base):
head+=1
number[tail] = number[head]
number[head] = base
return head if __name__ == '__main__':
quickSort(example,a,b)
运行结果如下图:
- 时间复杂度与空间复杂度
当数据有序时,以第一个关键字为基准分为两个子序列,前一个子序列为空,此时执行效率最差。
而当数据随机分布时,以第一个关键字为基准分为两个子序列,两个子序列的元素个数接近相等,此时执行效率最好。
所以,数据越随机分布时,快速排序性能越好;数据越接近有序,快速排序性能越差。
快速排序在每次分割的过程中,需要 1 个空间存储基准值。而快速排序的大概需要 Nlog2N次的分割处理,所以占用空间也是 Nlog2N 个。
快速排序方法——python实现的更多相关文章
- python的str,unicode对象的encode和decode方法, Python中字符编码的总结和对比bytes和str
python_2.x_unicode_to_str.py a = u"中文字符"; a.encode("GBK"); #打印: '\xd6\xd0\xce\xc ...
- 经典排序方法 python
数据的排序是在解决实际问题时经常用到的步骤,也是数据结构的考点之一,下面介绍10种经典的排序方法. 首先,排序方法可以大体分为插入排序.选择排序.交换排序.归并排序和桶排序四大类,其中,插入排序又分为 ...
- 排序算法之快速排序的python实现
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序. 快速排序算法的工作原理如下: 1. 从数列中挑出一个元 ...
- 矩阵或多维数组两种常用实现方法 - python
在python中,实现多维数组或矩阵,有两种常用方法: 内置列表方法和numpy 科学计算包方法. 下面以创建10*10矩阵或多维数组为例,并初始化为0,程序如下: # Method 1: list ...
- 快速排序(python实现)
算法导论上的快速排序采用分治算法,步骤如下: 1.选取一个数字作为基准,可选取末位数字 2.将数列第一位开始,依次与此数字比较,如果小于此数,将小数交换到左边,最后达到小于基准数的在左边,大于基准数的 ...
- 实现LRU的两种方法---python实现
这也是豆瓣2016年的一道笔试题... 参考:http://www.3lian.com/edu/2015/06-25/224322.html LRU(least recently used)就不做过多 ...
- python扩展实现方法--python与c混和编程 转自:http://www.cnblogs.com/btchenguang/archive/2012/09/04/2670849.html
前言 需要扩展Python语言的理由: 创建Python扩展的步骤 1. 创建应用程序代码 2. 利用样板来包装代码 a. 包含python的头文件 b. 为每个模块的每一个函数增加一个型如PyObj ...
- python扩展实现方法--python与c混和编程
前言 需要扩展Python语言的理由: 创建Python扩展的步骤 1. 创建应用程序代码 2. 利用样板来包装代码 a. 包含python的头文件 b. 为每个模块的每一个函数增加一个型如PyObj ...
- Python同时向控制台和文件输出日志logging的方法 Python logging模块详解
Python同时向控制台和文件输出日志logging的方法http://www.jb51.net/article/66756.htm 1 #-*- coding:utf-8 -*- 2 import ...
随机推荐
- 微信小程序中scoll-view的一个小坑
在微信小程序开发中,有时候swiper-view会出现显示不全的问题,我们可以用scoll-view来把它包裹下,但是要用scoll-view就一定要设置height,而我们经常是在页面中加的这个组件 ...
- lvm创建逻辑卷技巧
公司使用的服务器都是虚拟机,是虚拟机管理员通过模板创建的. 创建的所有逻辑卷都是使用的sda盘. 而我们在部署应用时需要和系统所在盘分离.(提高磁盘读写速度,避免系统盘被占满) 以前都是先创建新的逻辑 ...
- mybatis中collection association优化使用及多参数传递
mybatis都会用,但要优雅的用就不是那么容易了 今天就简单举例,抛砖引玉,供大家探讨 1.主表 CREATE TABLE `test_one` ( `id` int(11) NOT NULL AU ...
- Vertx Future 异常处理
Vertx Future 异常处理 异常发生 在使用Vertx进行开发的时候,必不可免使用Future异步编程框架.通过Future的 compose ,可以轻松实现不同异步任务的组合. 但是 ...
- Storm入门,看这篇就够了
部分一:Srorm 简介 1.1 Storm是实时的数据流,Hadoop是批量离线数据 起源背景 Twitter 开源的一个类似于Hadoop的实时数据处理框架 Storm是由Nathan Marz ...
- Elastic Static初识(01)
写在前面 Elastic Static 是指由Elasticsearch,Logstash,Kibana,Beats等组件结合起来而构成的一个数据收集,分析,可视化的一个架构.我们经常听说过的ELK就 ...
- 利用sqlalchemy 查询视图
这个问题 google 百度 中英文搜了一上午.最新的回答还是 7年前.最后自己靠着官方文档的自己改出来一个比较方便的方法 使用环境 python == 3.7.0 SQLAlchemy === 1. ...
- java8 运算语法集
1.分组并进行求和组合运算 示例主要代码: List<String> items = Arrays.asList("apple", "apple", ...
- Docker 环境搭建(RedHat 7)
Docker 环境搭建(RedHat 7): CentOS7 下载 http://mirrors.sohu.com/centos/7/isos/x86_64/ 装载镜像文件 安装Linux 7, 参考 ...
- python爬虫入门10分钟爬取一个网站
一.基础入门 1.1什么是爬虫 爬虫(spider,又网络爬虫),是指向网站/网络发起请求,获取资源后分析并提取有用数据的程序. 从技术层面来说就是 通过程序模拟浏览器请求站点的行为,把站点返回的HT ...