洛谷P2508 [HAOI2008]圆上的整点
题目描述
求一个给定的圆$ (x2+y2=r^2) $,在圆周上有多少个点的坐标是整数。
输入格式
\(r\)
输出格式
整点个数
输入输出样例
输入
4
输出
4
说明/提示
\(n\le 2000 000 000\)
思路
题目的所求可以转化为
问题的所求可以转化为\(y^{2}=r^2-x^2\)(其中\(x,y,r\)均为正整数).
即\(y^2=(r-x)(r+x)\)(其中\(r,x,y\)均为正整数)
不妨设\((r-x)=d\times u------① (r+x)=d\times v------②(\)其中\(gcd(u,v)=1\))
则有\(y^2=d^2\times u \times v\),因为\(u,v\)互质所以\(u,v\)一定是完全平方数,所以再设\(u=s^2,v=t^2\)
则有\(y^2=d^2 \times s^2 \times v^2\),即\(y=d \times s \times v\)
\(②-①\)得\(x=\dfrac{t^2-s^2}{2}\times d\)
\(②+①\)得\(2\times r=(t^2+s^2)\times d\)
然后枚举\(2\times r\)的约数\(d\),枚举算出\(s\),算出对应\(t\),若\(gcd(t,s)=1\)且\(x,t\)为整数,带入求出\(x,y\),若符合题意答案就加二(\(x,y\)满足交换律)
最后的答案为\((ans+1)\times 4\),(\(+1\)是因为坐标轴上有一点,\(\times 4\)是因为\(4\)个象限)
注意:小心乘法运算时爆\(long\) \(long\);
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<iomanip>
#include<cstdlib>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
#define int long long
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch)) s=s*10+ch-'0',ch=getchar();
return s*w;
}
inline int gcd(int a,int b)
{
if(!b) return a;
return gcd(b,a%b);
}
int r,ans;
inline void work(int d)
{
for(int s=1;s*s<=r/d;++s)
{
int t=sqrt(r/d-s*s);
if(gcd(s,t)==1&&s*s+t*t==r/d)
{
int x=(s*s-t*t)/2*d;
int y=d*s*t;
if(x>0&&y>0&&x*x+y*y==(r/2)*(r/2)) ans+=2;
}
}
}
signed main()
{
r=read()*2;
for(int i=1;i*i<=r;++i)
{
if(r%i==0)
{
work(i);
if(i*i!=r) work(r/i);
}
}
printf("%lld",(1+ans)*4);
return 0;
}
洛谷P2508 [HAOI2008]圆上的整点的更多相关文章
- [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- P2508 [HAOI2008]圆上的整点
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...
- luogu P2508 [HAOI2008]圆上的整点
传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
随机推荐
- 【洛谷4173】残缺的字符串(重拾FFT)
点此看题面 大致题意: 有一个长度为\(n\)的字符串\(A\)和一个长度为\(m\)的字符串\(B\),其中存在一些字符'*'可以与任意字符匹配.求\(B\)中所有满足条件的位置,使得从这一位置开始 ...
- python做中学(九)定时器函数的用法
程序中,经常用到这种,就是需要固定时间执行的,或者需要每隔一段时间执行的.这里经常用的就是Timer定时器.Thread 类有一个 Timer子类,该子类可用于控制指定函数在特定时间内执行一次. 可以 ...
- d03
回顾: 两个环境 工具环境:Jmeter的下载.启动.基本使用 项目环境:学生信息管理系统 两种接口: 天气预报:4个接口----GET方法 学生信息管理系统: 被测软件的学院信息接口: 4类: 查询 ...
- 关于Maven+Tomcat7下cannot be cast to javax.servlet.Servlet问题的解决办法
今天在开发 JavaWeb 项目的时候,遇到了这么一个问题,这个错误是我在进行表单的异步提交的时候出现的.无法转化为 Servlet 经过我的一番检查之后!没有发现任何问题.... 注解配置无误 继承 ...
- jquery 全选样例
代码: $(function(){ $("#checkAllOld").click(function() { $("input[id^='box_old_']" ...
- 【随笔】CLR:向头对象(Object Header)迈进一大步!!!
前言 在我之前一篇随笔里(戳我),我们知道,一个引用类型的对象,包含了2个额外的开销,一个是头对象(object header),一个是MT.我们接下来看看头对象到底有多神秘... Object He ...
- js使用工具将表单封装成json字符串传到后台,js截取字符串(学生笔记)
<script src="js/jquery.min.js"></script> <script src="https://cdn.boot ...
- YYLable 的使用 以及注意点
NSString *title = @"不得不说 YYKit第三方框架确实很牛,YYLabel在富文本显示和操作方面相当强大,尤其是其异步渲染,让界面要多流畅有多流畅,这里我们介绍下简单的使 ...
- [转]JVM系列五:JVM监测&工具[整理中]
原文地址:http://www.cnblogs.com/redcreen/archive/2011/05/09/2040977.html 前几篇篇文章介绍了介绍了JVM的参数设置并给出了一些生产环境的 ...
- SqlServer中用@@IDENTITY取最新ID不准的问题
最近遇到了一个SqlServer中用@@IDENTITY取最新ID不准的问题,经过在网上的一番查找,找到了如下资料,略作记录:"一个网友问我一个关于@@IDENTITY的问题.他的数据库中有 ...