Description

A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

|A1 - B1| + |A2 - B2| + ... + |AN - BN |
Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

Input

* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai

Output

* Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

题意:给你一个序列,求最少的代价让其变成单调不递增序列或单调不递减序列。

看到这道题目应该会想到用dp处理,dp[i][max]表示处理到前i位的最大值位max,于是只要两个for就可以,i=1~n,j=1~max。
dp[i][j]=min(dp[i][1~j]) + abs(a[i]-j),然后再从dp[n][1~max]中找最小的。
这题数据有点大如果用max会TLE,所以要将数据离散化一下。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define Abs(a) ((a)>0?(a):-(a))
using namespace std;
typedef long long ll;
const int M = 2e3 + 10;
ll dp[M][M];
ll a[M] , b[M] , c[M];
int main()
{
int n;
cin >> n;
for(int i = 1 ; i <= n ; i++) {
cin >> a[i];
c[n + 1 - i] = a[i];
b[i] = a[i];
}
sort(b + 1 , b + n + 1);
for(int i = 1 ; i <= n ; i++) {
ll MIN = dp[i - 1][1];
for(int j = 1 ; j <= n ; j++) {
MIN = min(MIN , dp[i - 1][j]);
dp[i][j] = MIN + Abs((a[i] - b[j]));
}
}
ll ans = dp[n][1];
for(int i = 1 ; i <= n ; i++) {
ans = min(ans , dp[n][i]);
}
memset(dp , 0 , sizeof(dp));
for(int i = 1 ; i <= n ; i++) {
ll MIN = dp[i - 1][1];
for(int j = 1 ; j <= n ; j++) {
MIN = min(MIN , dp[i - 1][j]);
dp[i][j] = MIN + Abs((c[i] - b[i]));
}
}
for(int i = 1 ; i <= n ; i++) {
ans = min(ans , dp[n][i]);
}
cout << ans << endl;
return 0;
}

poj3666 Making the Grade(基础dp + 离散化)的更多相关文章

  1. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  2. poj3666/CF714E/hdu5256/BZOJ1367(???) Making the Grade[线性DP+离散化]

    给个$n<=2000$长度数列,可以把每个数改为另一个数代价是两数之差的绝对值.求把它改为单调不增or不减序列最小代价. 话说这题其实是一个结论题..找到结论应该就很好做了呢. 手玩的时候就有感 ...

  3. poj 3666 Making the Grade(dp离散化)

    Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7068   Accepted: 3265 ...

  4. [poj3666]Making the Grade(DP/左偏树)

    题目大意:给你一个序列a[1....n],让你求一个序列b[1....n],满足 bi =a && bc,则最小的调整可以是把b变成c. 所以归纳可知上面结论成立. dp[i][j] ...

  5. 「kuangbin带你飞」专题十二 基础DP

    layout: post title: 「kuangbin带你飞」专题十二 基础DP author: "luowentaoaa" catalog: true tags: mathj ...

  6. 基础dp

    队友的建议,让我去学一学kuangbin的基础dp,在这里小小的整理总结一下吧. 首先我感觉自己还远远不够称为一个dp选手,一是这些题目还远不够,二是定义状态的经验不足.不过这些题目让我在一定程度上加 ...

  7. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  8. 基础DP(初级版)

    本文主要内容为基础DP,内容来源为<算法导论>,总结不易,转载请注明出处. 后续会更新出kuanbin关于基础DP的题目...... 动态规划: 动态规划用于子问题重叠的情况,即不同的子问 ...

  9. hdu 5586 Sum 基础dp

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Desc ...

随机推荐

  1. Kafka服务不可用(宕机)问题踩坑记

    背景 某线上日志收集服务报警,打开域名报502错误码. 收集服务由2台netty HA服务器组成,netty服务器将客户端投递来的protobuf日志解析并发送到kafka,打开其中一个应用的日志,发 ...

  2. RocketMQ中Broker的消息存储源码分析

    Broker和前面分析过的NameServer类似,需要在Pipeline责任链上通过NettyServerHandler来处理消息 [RocketMQ中NameServer的启动源码分析] 实际上就 ...

  3. 重启iis的命令是什么?三种简单的重启方式

    第一种.界面操作 打开“控制面板”->“管理工具”->“服务”.找到“IIS Admin Service” 右键点击“重新启动” 弹出 “停止其它服务” 窗口,点击“是”. 第二种.Net ...

  4. Unity实战案例教程之:不免费的PacMan(初级→中级)

    课程内容介绍: 本套课程适合以下人士: - 免费资料没教会你游戏开发的: - 学了Unity基础不知道怎么用在游戏项目里的: - 想快速开发一款好玩的游戏的: - 想学游戏不知道如何入门的: - 对游 ...

  5. 逆向破解之160个CrackMe —— 001

    CrackMe —— 001 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...

  6. React躬行记(13)——React Router

    在网络工程中,路由能保证信息从源地址传输到正确地目的地址,避免在互联网中迷失方向.而前端应用中的路由,其功能与之类似,也是保证信息的准确性,只不过来源变成URL,目的地变成HTML页面. 在传统的前端 ...

  7. django实现自定义manage命令的扩展

    在Django开发过程中我们都用过django-admin.py和manage.py命令. django-admin.py是一个命令行工具,可以执行一些管理任务,比如创建Django项目.而manag ...

  8. NLP(十五)让模型来告诉你文本中的时间

    背景介绍   在文章NLP入门(十一)从文本中提取时间 中,笔者演示了如何利用分词.词性标注的方法从文本中获取时间.当时的想法比较简单快捷,只是利用了词性标注这个功能而已,因此,在某些地方,时间的识别 ...

  9. postman 测试http,接口

    1.form-data: 就是http请求中的multipart/form-data,它会将表单的数据处理为一条消息,以标签为单元,用分隔符分开.既可以上传键值对,也可以上传文件.当上传的字段是文件时 ...

  10. javaScript基础-03 javascript语句

    一. 声明语句 var和function都是声明语句.声明或定义变量或函数. var 声明一个或者多个变量.语法如下: var a ; var b = 1; var c, d; var e = 3; ...