NOI模拟赛(3.15) sequence(序列)
Description
两个子序列被认为是不同的当且仅当:两个子序列属于两个不同的写序列方案(两个写序列方案中有至少一步是不一样的)或两个子序列位于同一写序列方案的不同位置。
由于结果可能很大,所以小A只需要知道最长严格上升子序列的方案数对10^9+7取模的结果。
Input
第二行包含N个由空格隔开的正整数,表示小A写下的初始序列。序列中的每一个元素小于等于10^9。
Output
Sample Input
输入1:
2
1 1
输入2:
4
2 1 3 4
Sample Output
输出1:
1 4
输出2:
4 1
Data Constraint
50%的数据满足:N<=1000
Solution
题目有一个隐藏性质是这样的
答案的第一问是对于每个点为结束点或开始点求出的最长上升序列长度和最长下降序列长度之和
在dp以上两个值的过程中同时统计方案数,用树状数组可以n log n时间复杂度做到
#include <vector>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define set_file(File) freopen(#File".in", "r", stdin), freopen(#File".out", "w", stdout)
#define close_file() fclose(stdin), fclose(stdout)
#define ll long long
#define mo 1000000007
#define maxn 200010 template<class T> inline void Rin(T &x)
{
int c = getchar();
for(x = 0; c < 48 || c > 57; c = getchar());
for(; c > 47 && c < 58; c = getchar()) x = (x << 1) + (x << 3) + c - 48;
} std::vector<int> VeH; int n, seq[maxn], mx[maxn], c[maxn], f[maxn], fs[maxn], g[maxn], gs[maxn]; void get_ans_lef(int i)
{
int x = seq[i] - 1, tot = 1, ans = 0;
for(; x; x -= x & -x)
{
if(mx[x] > ans) ans = mx[x], tot = c[x];
else if(mx[x] == ans) tot = (tot + c[x]) % mo;
}
f[i] = ans + 1, fs[i] = tot;
x = seq[i];
for(; x <= n; x += x & -x)
{
if(mx[x] < f[i]) mx[x] = f[i], c[x] = fs[i];
else if(mx[x] == f[i]) c[x] = (c[x] + fs[i]) % mo;
}
} void get_ans_rig(int i)
{
int x = seq[i] - 1, tot = 1, ans = 0;
for(; x; x -= x & -x)
{
if(mx[x] > ans) ans = mx[x], tot = c[x];
else if(mx[x] == ans) tot = (tot + c[x]) % mo;
}
g[i] = ans + 1, gs[i] = tot;
x = seq[i];
for(; x <= n; x += x & -x)
{
if(mx[x] < g[i]) mx[x] = g[i], c[x] = gs[i];
else if(mx[x] == g[i]) c[x] = (c[x] + gs[i]) % mo;
}
} int main()
{
set_file(sequence);
Rin(n);
for(int i = n; i; i--)
{
Rin(seq[i]);
VeH.push_back(seq[i]);
}
std::sort(VeH.begin(), VeH.end());
VeH.erase(unique(VeH.begin(), VeH.end()), VeH.end());
for(int i = 1; i <= n; i++) seq[i] = std::lower_bound(VeH.begin(), VeH.end(), seq[i]) - VeH.begin() + 1;
for(int i = 1; i <= n; i++) get_ans_lef(i);
memset(mx, 0, sizeof mx);
memset(c, 0, sizeof c);
for(int i = 1; i <= n; i++) seq[i] = n - seq[i] + 1;
for(int i = 1; i <= n; i++) get_ans_rig(i);
int tot = 0, ans = 0;
for(int i = 1; i <= n; i++)
if(f[i] + g[i] - 1 > ans) ans = f[i] + g[i] - 1, tot = (ll)fs[i] * gs[i] % mo;
else if(f[i] + g[i] - 1 == ans) tot = (tot + (ll)fs[i] * gs[i] % mo) % mo;
for(int i = 1; i <= n - ans; i++) tot = (ll)tot * 2 % mo;
printf("%d %d\n", ans, tot);
close_file();
return 0;
}
NOI模拟赛(3.15) sequence(序列)的更多相关文章
- Java 第十一届 蓝桥杯 省模拟赛 正整数的摆动序列
正整数的摆动序列 问题描述 如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列.即 a[2i]<a[2i-1], a[2i+1]>a[2i]. 小明想知道,长度为 m ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- NOI模拟赛 Day1
[考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...
- NOI.ac模拟赛20181021 ball sequence color
T1 ball 可以发现每次推动球时,是将每个球的位置 −1-1−1 ,然后把最左边的球放到 P−1P-1P−1 处. 记个 −1-1−1 次数,再用set维护就好了. #include <bi ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
- 【NOI模拟赛(湖南)】DeepDarkFantasy
DeepDarkFantasy 从东京出发,不久便到一处驿站,写道:日暮里. ——鲁迅<藤野先生> 定义一个置换的平方为对1~n的序列做两次该置换得到的序列.已知一个置换的平方,并且这个 ...
- [模拟赛] T3 最优序列
Description 给出一个长度为n(n<=1000)的正整数序列,求一个子序列,使得原序列中任意长度为m的子串中被选出的元素不超过k(k<=m<=10)个,并且选出的元素之和最 ...
- NOI模拟赛 #4
好像只有一个串串题可以做... 不会 dp 和数据结构啊 QAQ 10 + 20 + 100 = 130 T1 一棵树,每个点有一个能量的最大容量 $l_i$ 和一个增长速度 $v_i$,每次可以选一 ...
- NOI 模拟赛 #3
打开题一看,咦,两道数数,一道猫式树题 感觉树题不可做呀,暴力走人 数数题数哪个呢?感觉置换比矩阵好一些 于是数了数第一题 100 + 0 + 15 = 115 T1 bishop 给若干个环,这些环 ...
随机推荐
- Odd sum CodeForces - 797B
Odd sum CodeForces - 797B 好方法:贪心 贪心2 糟糕(不用动脑)的方法:dp ans[i][0]表示到第i个和为偶数最大,ans[i][1]表示到第i个和为奇数最大. 但是, ...
- debug授权码
www.vfxcx.com 704835b5c54b56426257e0742568fe54
- Unity3d中UnityEngine.Object
UnityEngine.Object继承自system.Object,是Unity所涉及所有物体的基类. Static Functions 静态函数 下面的都是静态函数 Destroy Remov ...
- 【前端】jq弹出一个透明小提示窗,然后逐渐消失
function show_main(content) { var showWindow = '<div id="show_main" style="borde ...
- Tcl介绍和基础语法
Tcl的背景 Tcl(读作tickle)诞生于80年代的加州大学伯克利分校,作为一种简单高效可移植性好的脚本语言,目前已经广泛应用在几乎所有的EDA工具中.Tcl 的最大特点就是其语法格式极其简单,采 ...
- 【HEVC简介】SAO-Sample Adaptive Offset, 样本自适应偏移量
paper: Sample Adaptive Offset for HEVC <HEVC标准介绍.HEVC帧间预测论文笔记>系列博客,目录见:http://www.cnblogs.com/ ...
- Django展示第一个网页
展示一个网页需要三部分组成: urls.py -- 指定网址与对应的视图 views.py -- 创建试图以及指定对应的模板 template/*.html -- 对应的模板 一.urls.py ur ...
- (译)IOS block编程指南 2 block开始
Getting Started with Blocks(开始block) The following sections help you to get started with blocks usin ...
- (转)使用CGLIB实现AOP功能与AOP概念解释
http://blog.csdn.net/yerenyuan_pku/article/details/52864395 使用CGLIB实现AOP功能 在Java里面,我们要产生某个对象的代理对象,这个 ...
- Unity Shader-热空气扭曲效果
GrabPass GrabPass是Unity为我们提供的一个很方便的功能,可以直接将当前屏幕内容渲染到一张贴图上,我们可以直接在shader中使用这张贴图而不用自己去实现渲染到贴图这样的一个过程,大 ...