Description

小A有N个正整数,紧接着,他打算依次在黑板上写下这N个数。对于每一个数,他可以决定将这个数写在当前数列的最左边或最右边。现在他想知道,他写下的数列的可能的最长严格上升子序列(可由不连续的元素组成)的长度是多少,同时他还想知道有多少种不同的最长的严格上升子序列。
两个子序列被认为是不同的当且仅当:两个子序列属于两个不同的写序列方案(两个写序列方案中有至少一步是不一样的)或两个子序列位于同一写序列方案的不同位置。
由于结果可能很大,所以小A只需要知道最长严格上升子序列的方案数对10^9+7取模的结果。

 

Input

第一行一个正整数N(1<=N<=2*10^5)。
第二行包含N个由空格隔开的正整数,表示小A写下的初始序列。序列中的每一个元素小于等于10^9。

Output

输出包含一行,输出最长严格上升子序列的长度以及方案数对10^9+7取模的结果。

 

Sample Input

输入1:
2
1 1
输入2:
4
2 1 3 4

Sample Output

输出1:
1 4
输出2:
4 1
 

Data Constraint

30%的数据满足:N<=20
50%的数据满足:N<=1000

Solution

题目有一个隐藏性质是这样的

答案的第一问是对于每个点为结束点或开始点求出的最长上升序列长度和最长下降序列长度之和

在dp以上两个值的过程中同时统计方案数,用树状数组可以n log n时间复杂度做到

#include <vector>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define set_file(File) freopen(#File".in", "r", stdin), freopen(#File".out", "w", stdout)
#define close_file() fclose(stdin), fclose(stdout)
#define ll long long
#define mo 1000000007
#define maxn 200010 template<class T> inline void Rin(T &x)
{
int c = getchar();
for(x = 0; c < 48 || c > 57; c = getchar());
for(; c > 47 && c < 58; c = getchar()) x = (x << 1) + (x << 3) + c - 48;
} std::vector<int> VeH; int n, seq[maxn], mx[maxn], c[maxn], f[maxn], fs[maxn], g[maxn], gs[maxn]; void get_ans_lef(int i)
{
int x = seq[i] - 1, tot = 1, ans = 0;
for(; x; x -= x & -x)
{
if(mx[x] > ans) ans = mx[x], tot = c[x];
else if(mx[x] == ans) tot = (tot + c[x]) % mo;
}
f[i] = ans + 1, fs[i] = tot;
x = seq[i];
for(; x <= n; x += x & -x)
{
if(mx[x] < f[i]) mx[x] = f[i], c[x] = fs[i];
else if(mx[x] == f[i]) c[x] = (c[x] + fs[i]) % mo;
}
} void get_ans_rig(int i)
{
int x = seq[i] - 1, tot = 1, ans = 0;
for(; x; x -= x & -x)
{
if(mx[x] > ans) ans = mx[x], tot = c[x];
else if(mx[x] == ans) tot = (tot + c[x]) % mo;
}
g[i] = ans + 1, gs[i] = tot;
x = seq[i];
for(; x <= n; x += x & -x)
{
if(mx[x] < g[i]) mx[x] = g[i], c[x] = gs[i];
else if(mx[x] == g[i]) c[x] = (c[x] + gs[i]) % mo;
}
} int main()
{
set_file(sequence);
Rin(n);
for(int i = n; i; i--)
{
Rin(seq[i]);
VeH.push_back(seq[i]);
}
std::sort(VeH.begin(), VeH.end());
VeH.erase(unique(VeH.begin(), VeH.end()), VeH.end());
for(int i = 1; i <= n; i++) seq[i] = std::lower_bound(VeH.begin(), VeH.end(), seq[i]) - VeH.begin() + 1;
for(int i = 1; i <= n; i++) get_ans_lef(i);
memset(mx, 0, sizeof mx);
memset(c, 0, sizeof c);
for(int i = 1; i <= n; i++) seq[i] = n - seq[i] + 1;
for(int i = 1; i <= n; i++) get_ans_rig(i);
int tot = 0, ans = 0;
for(int i = 1; i <= n; i++)
if(f[i] + g[i] - 1 > ans) ans = f[i] + g[i] - 1, tot = (ll)fs[i] * gs[i] % mo;
else if(f[i] + g[i] - 1 == ans) tot = (tot + (ll)fs[i] * gs[i] % mo) % mo;
for(int i = 1; i <= n - ans; i++) tot = (ll)tot * 2 % mo;
printf("%d %d\n", ans, tot);
close_file();
return 0;
}

  

NOI模拟赛(3.15) sequence(序列)的更多相关文章

  1. Java 第十一届 蓝桥杯 省模拟赛 正整数的摆动序列

    正整数的摆动序列 问题描述 如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列.即 a[2i]<a[2i-1], a[2i+1]>a[2i]. 小明想知道,长度为 m ...

  2. 6.28 NOI模拟赛 好题 状压dp 随机化

    算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...

  3. NOI模拟赛 Day1

    [考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...

  4. NOI.ac模拟赛20181021 ball sequence color

    T1 ball 可以发现每次推动球时,是将每个球的位置 −1-1−1 ,然后把最左边的球放到 P−1P-1P−1 处. 记个 −1-1−1 次数,再用set维护就好了. #include <bi ...

  5. NOI 模拟赛 #2

    得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...

  6. 【NOI模拟赛(湖南)】DeepDarkFantasy

    DeepDarkFantasy 从东京出发,不久便到一处驿站,写道:日暮里.  ——鲁迅<藤野先生> 定义一个置换的平方为对1~n的序列做两次该置换得到的序列.已知一个置换的平方,并且这个 ...

  7. [模拟赛] T3 最优序列

    Description 给出一个长度为n(n<=1000)的正整数序列,求一个子序列,使得原序列中任意长度为m的子串中被选出的元素不超过k(k<=m<=10)个,并且选出的元素之和最 ...

  8. NOI模拟赛 #4

    好像只有一个串串题可以做... 不会 dp 和数据结构啊 QAQ 10 + 20 + 100 = 130 T1 一棵树,每个点有一个能量的最大容量 $l_i$ 和一个增长速度 $v_i$,每次可以选一 ...

  9. NOI 模拟赛 #3

    打开题一看,咦,两道数数,一道猫式树题 感觉树题不可做呀,暴力走人 数数题数哪个呢?感觉置换比矩阵好一些 于是数了数第一题 100 + 0 + 15 = 115 T1 bishop 给若干个环,这些环 ...

随机推荐

  1. selenium之webdriverAPI接口详解

    1. 浏览器操作 driver.maximize_window() #最大化窗口driver.execute_script('window.scrollTo(0,0);') #滚动窗口到最上面driv ...

  2. bzoj1854 [Scoi2010]游戏【构图 并查集】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1854 没想到怎么做真是不应该,看到每个武器都有两个属性,应该要想到连边构图的!太不应该了! ...

  3. 转 Oracle最新PSU大搜罗

    Quick Reference to Patch Numbers for Database/GI PSU, SPU(CPU), Bundle Patches and Patchsets (文档 ID ...

  4. Retrofit实现PUT网络请求,并修改Content-Type

    @FormUrlEncoded @PUT(Constant.BOSS_HX_CHANGE_PHONE_INTERVIEW) Call<ResponseHxResultBean> handl ...

  5. RHEL 6.5----apr-util1.6执行make时报错

    报错信息 ]: Entering directory `/usr/local/src/apr-util-' /bin//build-/libtool --silent --mode=compile / ...

  6. 使用Appache部署WEB服务器

    Apache的起源(这个就不说了,百度下就都有了) 简介:Apache HTTP Server(简称Apache)是Apache软件基金会的一个开放源码的网页服务器,可以在大多数计算机操作系统中运行, ...

  7. 远程访问rhel7的oracle中的问题

    客户端得到的错误信息通常是:ORA-12170: TNS:连接超时 这时,我们基本可以肯定是服务器没有开放1521端口(假设你用默认设置) 解决方法: (1)假如你是在一个局域网环境,配置了防火墙.那 ...

  8. javascript回调函数那些事~

    什么是回调函数? 回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数时,我们就说这是回调函数.回调函数不是由该函数的实现方直 ...

  9. webform简单空间以及数据库访问

    1.简单控件 Label - 文字,编译后显示的是<span> 一说到边框:1.颜色 2.类型,比如solid实线3.width宽度Literal -里面可以承载很多东西,比如文字,比如a ...

  10. 前端之HTML语法及常用标签

    html语法: 1.常规标记: <标记 属性=“属性值” 属性=“属性值”></标记>: 2.空标记: <标记 属性=“属性值” 属性=“属性值”/> 注意事项: ...