题目描述

题解:

每条边至少经过一次,说明经过下界为$1$。

然后套有源汇上下界最小费用可行流板子。

口胡一下。

此类问题的建图通式为:

1.假设原来的边流量上下界为$[l,r]$,那么在新图中建流量上界为$(r-l)$的边;

就是必须流的先流完,不一定的一会再算。

2.统计一下每个点流入的$l$之和$ind$以及流出的$l$之和$otd$,设$d=ind-otd$;

若$d>0$,则建一条从新源点到该点的、容量为$d$的边,表示减下界的时候多减了,要加回来;

若$d<0$,则建一条从该点到新汇点的、容量为$-d$的边,表示加多了,要减回来。

3.旧汇点->旧源点,容量为$inf$,有借有还再借不难

然后求新图的最小费用最大流,答案即为最小费用+所有边的费用*下界。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = ;
const int inf = 0x3f3f3f3f;
const ll Inf = 0x3f3f3f3f3f3f3f3fll;
template<typename T>
inline void read(T&x)
{
T f = ,c = ;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
int n,hed[N],cnt=-,S,T,otd[N],ind[N],SS,TT;
struct EG
{
int to,nxt;
ll f,w;
}e[*N];
void ae(int f,int t,ll fl,ll wl)
{
e[++cnt].to = t;
e[cnt].nxt = hed[f];
e[cnt].f = fl;
e[cnt].w = wl;
hed[f] = cnt;
}
void AE(int f,int t,ll fl,ll wl)
{
ae(f,t,fl,wl);
ae(t,f,,-wl);
}
int pre[N],fa[N];
ll dis[N],fl[N],ans;
bool vis[N];
bool spfa()
{
queue<int>q;
memset(dis,0x3f,sizeof(dis));
dis[SS]=,fl[SS]=Inf,vis[SS]=;q.push(SS);
while(!q.empty())
{
int u = q.front();
q.pop();
for(int j=hed[u];~j;j=e[j].nxt)
{
int to = e[j].to;
if(e[j].f&&dis[to]>dis[u]+e[j].w)
{
dis[to]=dis[u]+e[j].w;
fl[to]=min(fl[u],e[j].f);
fa[to]=u,pre[to]=j;
if(!vis[to])
{
vis[to]=;
q.push(to);
}
}
}
vis[u]=;
}
return dis[TT]!=Inf;
}
ll mcmf()
{
ll ret = ;
while(spfa())
{
ret+=fl[TT]*dis[TT];
int u = TT;
while(u!=SS)
{
e[pre[u]].f-=fl[TT];
e[pre[u]^].f+=fl[TT];
u=fa[u];
}
}
return ret;
}
int main()
{
read(n);
S=,T=n+;
SS=n+,TT=n+;
memset(hed,-,sizeof(hed));
for(int k,t,w,i=;i<=n;i++)
{
read(k);
while(k--)
{
read(t),read(w);
ind[t]++,otd[i]++;
AE(i,t,inf,w);
ans+=w;
}
if(i!=)AE(i,T,inf,);
}
for(int i=;i<=n+;i++)
{
int d = ind[i]-otd[i];
if(d<)AE(i,TT,-d,);
else AE(SS,i,d,);
}
AE(T,S,inf,);
ans+=mcmf();
printf("%lld\n",ans);
return ;
}

Ahoi2014&Jsoi2014 支线剧情的更多相关文章

  1. BZOJ3876[Ahoi2014&Jsoi2014]支线剧情——有上下界的最小费用最大流

    题目描述 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费 ...

  2. BZOJ3876 [Ahoi2014&Jsoi2014]支线剧情 【有上下界费用流】

    题目 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费最少 ...

  3. [AHOI2014/JSOI2014]支线剧情

    题目 有源汇上下界最小费用可行流 首先注意到要求是每一条边都经过至少一次,所以对于每一条边我们设成\([1,\infty]\)就好了 另外所有点都能结束剧情,所有点都要向汇点\(t\)连一条\([0, ...

  4. bzoj 3876: [Ahoi2014&Jsoi2014]支线剧情【有上下界有源汇最小费用最大流】

    每条边流量有下界有费用,很显然是有上下界有源汇最小费用最大流 连边(s,1,(0,inf),0),(i,t,(0,inf),0),表示从1出发inf次从每个点结束inf次 连边(i,j,(1,inf) ...

  5. bzoj3876: [Ahoi2014&Jsoi2014]支线剧情

    题意:给一幅图,从1开始,每条边有边权最少走一遍,可以在任意点退出,问最小花费 题解:上下界费用流,每个边都流一遍,然后为了保证流量平衡,新建源点汇点,跑费用流把流量平衡 /************* ...

  6. [AHOI2014/JSOI2014]支线剧情 有上下界费用流

    ---题面--- 题解: 第一眼费用流,,然后想了好久怎么建图,,,最后发现是最小费用可行流的板子题.... 其实还没有很懂这个算法,所以这里只是摆一下步骤,以后再补理解吧. 首先一个思路就是转换图, ...

  7. bzoj3876: [Ahoi2014&Jsoi2014]支线剧情(上下界费用流)

    传送门 一道题让我又要学可行流又要学zkw费用流…… 考虑一下,原题可以转化为一个有向图,每次走一条路径,把每一条边都至少覆盖一次,求最小代价 因为一条边每走过一次,就要付出一次代价 那不就是费用流了 ...

  8. 【BZOJ3876】[AHOI2014&JSOI2014] 支线剧情(无源汇有上下界网络流)

    点此看题面 大致题意: 有一张\(DAG\),经过每条边有一定时间,从\(1\)号点出发,随时可以返回\(1\)号点,求经过所有边的最短时间. 无源汇有上下界网络流 这是无源汇有上下界网络流的板子题. ...

  9. BZOJ 3876 [Ahoi2014&Jsoi2014]支线剧情

    题解: 带下界的费用流 对于x->y边权为z Addedge(x,t,1,0) Addedge(s,y,1,z) Addedge(x,y,inf,0) 然后对每个点Addedge(i,1,inf ...

随机推荐

  1. python 面向对象十三 枚举类

    from enum import Enum Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', ...

  2. Python 爬虫面试题 170 道:2019 版

    引言 最近在刷面试题,所以需要看大量的 Python 相关的面试题,从大量的题目中总结了很多的知识,同时也对一些题目进行拓展了,但是在看了网上的大部分面试题不是很满意,一个是有些部分还是 Python ...

  3. Robotframework自动化系列:筛选结果数量统计

    Robotframework自动化系统:筛选结果数量统计 上一个节点已经可以随机选中某一个下拉框的值,我们在使用evaluate随机数的时候需要计算下拉选项总数,这时候我们是手工计算输入的:这时候如果 ...

  4. jmeter远程运行GUI多用户负载

    1.在Jmeter控制机的bin目录下找到jmeter.properties文件并修改”remote_hosts”,增加负载机IP,多个IP使用英文逗号隔开,修改后要重启Jmeter.如下图: 2.添 ...

  5. Zabbix-Server 添加主机

    之前讲解了如何配置Zabbix 服务端和客户端,现在我们来讲解下如何在zabbix监控端添加主机 Zabbix服务端:Centos 配置 Zabbix服务端 Zabbix客户端:Centos 配置 Z ...

  6. c++ 常用的几种重载操作符

    运算符可以作为普通函数,朋友函数或成员函数来重载.下面的经验法则可以帮助您确定哪种形式最适合于给定的情况: 如果你重载了赋值(=),下标([]),函数调用(())或成员选择( - >),那么它就 ...

  7. 状态压缩DP SRM 667 Div1 OrderOfOperations 250

    Problem Statement      Cat Noku has just finished writing his first computer program. Noku's compute ...

  8. 1. Visio Web 形状 - 无法与 Web 服务器建立连接。请稍后重新进行搜索。处理方式

    今天在Visio中使用“搜索形状”,发现不管搜什么,结果都是:Visio Web 形状 - 无法与 Web 服务器建立连接.请稍后重新进行搜索 具体解决方案如下:控制面板=>添加或删除程序=&g ...

  9. servlet生命周期:

    Servlet生命周期分为三个阶段: 1,初始化阶段  servlet实例创建时调用init()方法,在Servlet的整个生命周期内,init()方法只被调用一次. 2,响应客户请求阶段 调用ser ...

  10. ionic back 返回按钮不正常显示&&二级路由点击返回按钮失效无法返回到上一级页面的问题

    很多时候,app不只有一两级路由,还要三四级路由,但是在ionic中,给出的返回键三级或四级无法使用,所以得自定义方法设置返回. 直接贴代码: <ion-nav-buttons side=&qu ...