基础准备

首先需要明白数据传输的底层实现机制,在http://blog.csdn.net/ns_code/article/details/15813809这篇博客中有详细的介绍,在上面的博客中,我们提到了SendQ和RecvQ缓冲队列,这两个缓冲区的容量在具体实现时会受一定的限制,虽然它们使用的实际内存大小会动态地增长和收缩,但还是需要一个硬性的限制,以防止行为异常的程序所控制的单一TCP连接将系统的内存全部消耗。正式由于缓冲区的容量有限,它们可能会被填满,事实也正是如此,如果与TCP的流量控制机制结合使用,则可能导致一种形式的死锁。

一旦RecvQ已满,TCP流控制机制就会产生作用(使用流控制机制的目的是为了保证发送者不会传输太多数据,从而超出了接收系统的处理能力),它将阻止传输发送端主机的SendQ中的任何数据,直到接收者调用输入流的read()方法将RecvQ中的数据移除一部分到Delivered中,从而腾出了空间。发送端可以持续地写出数据,直到SendQ队列被填满,如果SendQ队列已满时调用输出流的write()方法,则会阻塞等待,直到有一些字节被传输到RecvQ队列中,如果此时RecvQ队列也被填满了,所有的操作都将停止,直到接收端调用了输入流的read()方法将一些字节传输到了Delivered队列中。

引出问题

我们假设SendQ队列和RecvQ队列的大小分别为SQS和RQS。将一个大小为n的字节数组传递给发送端write()方法调用,其中n > SQS,直到有至少n-SQS字节的数据传递到接收端主机的RecvQ队列后,该方法才返回。如果n的大小超过了SQS+RQS,write()方法将在接收端从输入流读取了至少n-(SQS+RQS)字节后才会返回。如果接收端没有调用read()方法,大数据量的发送是无法成功的。特别是连接的两端同时分别调用它的输出流的write()方法,而他们的缓冲区大小又大于SQS+RQS时,将会发生死锁:两个write操作都不能完成,两个程序都将永远保持阻塞状态。

下面考虑一个具体的例子,即主机A上的程序和主机B上的程序之间的TCP连接。假设A和B上的SQS和RQS都是500字节,下图展示了两个程序试图同时发送1500字节时的情况。主机A上的程序中的前500字节已经传输到另一端,另外500字节已经复制到了主机A的SendQ队列中,余下的500字节则无法发送,write()方法将无法返回,直到主机B上程序的RecvQ队列有空间空出来,然而不幸的是B上的程序也遇到了同样的情况,而二者都没有及时调用read()方法从自己的RecvQ队列中读取数据到Delivered队列中。因此,两个程序的write()方法调用都永远无法返回,产生死锁。因此,在写程序时,要仔细设计协议,以避免在两个方向上传输大量数据时产生死锁。

示例分析

回顾前面几篇博客中的TCP通信的示例代码,基本都是只调用一次write()方法将所有的数据写出,而且我们测试的数据量也不大。考虑一个压缩字节的Demo,客户端从文件中读取字节,发送到服务端,服务端将受到的文件压缩后反馈给客户端。

这里先给出代码,客户端代码如下:

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.Socket; public class CompressClientNoDeadlock { public static final int BUFSIZE = 256; // Size of read buffer public static void main(String[] args) throws IOException { if (args.length != 3) // Test for correct # of args
throw new IllegalArgumentException("Parameter(s): <Server> <Port> <File>"); String server = args[0]; // Server name or IP address
int port = Integer.parseInt(args[1]); // Server port
String filename = args[2]; // File to read data from // Open input and output file (named input.gz)
final FileInputStream fileIn = new FileInputStream(filename);
FileOutputStream fileOut = new FileOutputStream(filename + ".gz"); // Create socket connected to server on specified port
final Socket sock = new Socket(server, port); // Send uncompressed byte stream to server
Thread thread = new Thread() {
public void run() {
try {
SendBytes(sock, fileIn);
} catch (Exception ignored) {}
}
};
thread.start(); // Receive compressed byte stream from server
InputStream sockIn = sock.getInputStream();
int bytesRead; // Number of bytes read
byte[] buffer = new byte[BUFSIZE]; // Byte buffer
while ((bytesRead = sockIn.read(buffer)) != -1) {
fileOut.write(buffer, 0, bytesRead);
System.out.print("R"); // Reading progress indicator
}
System.out.println(); // End progress indicator line sock.close(); // Close the socket and its streams
fileIn.close(); // Close file streams
fileOut.close();
} public static void SendBytes(Socket sock, InputStream fileIn)
throws IOException { OutputStream sockOut = sock.getOutputStream();
int bytesRead; // Number of bytes read
byte[] buffer = new byte[BUFSIZE]; // Byte buffer
while ((bytesRead = fileIn.read(buffer)) != -1) {
sockOut.write(buffer, 0, bytesRead);
System.out.print("W"); // Writing progress indicator
}
sock.shutdownOutput(); // Done sending
}
}

死锁问题的产生原因在客户端上,因此,服务端的具体代码我们不再给出,服务端采取边读边写的策略。

下面我们边对上面可能产生的问题进行分析。对该示例而言,当需要传递的文件容量不是很大时,程序运行正常,也能得到预期的结果,但如果尝试运行该客户端并传递给它一个大文件,改文件压缩后仍然很大(在此,大的精确定义取决于程序运行的系统,不过压缩后依然超过2MB的文件应该就可以使改程序产生死锁问题),那么客户端将打印出一堆W后停止,而且不会打印出任何R,程序也不会终止。

为什么会产生这种情况呢?我们来看程序,客户端很明显是一边读取本地文件中的数据,一边调用输出流的write()方法,将数据送入客户端主机的SendQ队列,直到文件中的数据被读取完,客户端才调用输入流的read()方法,读取服务端发送回来的数据。

考虑这种情况:客户端和服务端的SendQ队列和RecvQ队列中都有500字节的数据空间,而客户端发送了一个10000字节的文件,同时假设对于这个文件,服务端读取1000字节并返回500字节,即压缩比为2:1,当客户端发送了2000字节后,服务端将最终全部读取这些字节,并发回1000字节,由于客户端此时并没有调用输入流的read()方法从客户端主机的RecvQ队列中移出数据到Delivered,因此,此时客户端的RecvQ队列和服务端的SendQ队列都被填满了,此时客户端还在继续发送数据,又发送了1000字节的数据,并且被服务端全部读取,但此时服务端的write操作尝试都已被阻塞,不能继续发送数据给客户端,当客户端再发送了另外的1000字节数据后,客户端的SendQ队列和服务端的RecvQ队列都将被填满,后续的客户端write操作也将阻塞,从而形成死锁。

解决方案

如何解决这个问题呢?造成死锁产生的原因是因为客户端在发送数据的同时,没有及时读取反馈回来的数据,从而使数据都阻塞在了底层的传输队列中。

方案一是在编写客户端程序时,使客户端一边循环调用输出流的read()方法向服务端发送数据,一边循环调用输入流的read()方法读取从服务端反馈回来的数据,但这也不能完全保证不会产生死锁。

更好的解决方案是在不同的线程中执行客户端的write循环和read循环。一个线程从文件中反复读取未压缩的字节并将其发送给服务器,直到文件的结尾,然后调用该套接字的shutdownOutput()方法。另一个线程从服务端的输入流中不断读取压缩后的字节,并将其写入输出文件,直到到达了输入流的结尾(服务器关闭了套接字)。这样,便可以实现一边发送,一边读取,而且如果一个线程阻塞了,另一个线程仍然可以独立执行。这样我们可以对客户端代码进行简单的修改,将SendByes()方法调用放到一个线程中:

Thread thread = new Thread() {
public void run() {
try {
SendBytes(sock, fileIn);
} catch (Exception ignored) {}
}
};
thread.start();

当然,解决这个问题也可以不使用多线程,而是使用NIO机制(Channel和Selector)。

转自:http://blog.csdn.net/ns_code/article/details/15939993

【Java TCP/IP Socket】深入剖析socket——TCP通信中由于底层队列填满而造成的死锁问题(含代码)的更多相关文章

  1. 深入浅出--iOS的TCP/IP协议族剖析&&Socket

    深入浅出--iOS的TCP/IP协议族剖析&&Socket   简介 该篇文章主要回顾--TCP/IP协议族中的TCP/UDP.HTTP:还有Socket.(--该文很干,酝酿了许久! ...

  2. iOS的TCP/IP协议族剖析&&Socket

    原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0 简介 该篇文章主要回顾--TCP/IP协议族中的TCP/UDP.HTTP:还有S ...

  3. 深入浅出-TCP/IP协议族剖析&&Socket

    Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0 #简介 该篇文章主要回顾–TCP/I ...

  4. TCP/IP、Http、Socket、XMPP-从入门到深入

    TCP/IP.Http.Socket.XMPP-从入门到深入 终极iOS程序猿 2016-12-29 18:27 为了便于大家理解和记忆,我们先对这几个概念进行的介绍,然后分析他们的不同,再进行详细的 ...

  5. TCP/IP、Http、Socket的区别

    1.标准网络层次 网络由下往上分为:物理层.数据链路层.网络层.传输层.会话层.表示层和应用层. 下面的图表试图显示不同的TCP/IP和其他的协议在最初OSI模型中的位置: 7 应用层 例如HTTP. ...

  6. 【PHPsocket编程专题(理论篇)】初步理解TCP/IP、Http、Socket.md

    前言 我们平时说的最多的socket是什么呢,实际上socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API).那TCP/IP又是什么呢?TCP/IP是ISO/OS ...

  7. TCP/IP、Http、Socket的区别与关系

    --TCP/IP.Http.Socket的区别与关系 --------------------------------------2014/05/14 网络由下往上分为 物理层.数据链路层.网络层.传 ...

  8. TCP/IP Http 和Https socket之间的区别

    TCP/IP Http 和Https  socket之间的区别 TCP/IP是个协议组,它分为网络层,传输层和应用层, 在网络层有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协议.   ...

  9. Python Web学习笔记之TCP/IP、Http、Socket的区别

    经常在笔试.面试或者工作的时候听到这些协议,虽然以前没怎么涉及过,但至少知道这些是和网络编程密不可分的知识,作为一个客户端开发程序员,如果可以懂得网络编程的话,他的作用和能力肯定会提升一个档次.原因很 ...

随机推荐

  1. Codeforces Round #510 #A

    http://codeforces.com/contest/1042/problem/A 题目大意就是: 现在公园里有n个长椅(要多长有多长),第i个长椅上有a[i]个人(泰山崩于前而不乱),现在又有 ...

  2. easyUI 之datagrid 在前端自定义排序

    首先先来看一下,直接从后台读取数据并展示到前端的列表,后端传回的数据是“按商品ID倒序排列” 前端源代码 $('#good_tables').datagrid({ nowrap: true, auto ...

  3. 文件操作-mkdir

    Linux mkdir命令 主要用来创建目录,也可以直接创建多层目录,本文就为大家介绍下 Linux mkdir命令 . 转载自https://www.linuxdaxue.com/linux-com ...

  4. CVS使用之:先update后commit

    vcs在进行版本管理时: 1.如果添加新文件 cvs add directory_name/filename cvs commit directory_name/filename 2.如果修改文件 c ...

  5. Solr通过配DIH对数据库数据做索引

    1 加入相关jar包 将2个相关jar包复制到/opt/solr-7.7.1/server/solr-webapp/webapp/WEB-INF/lib文件夹下 jar包名称 solr-dataimp ...

  6. centos 装 android studio (2)

    这里,我打算安装 JDK 1.8. $ sudo add-apt-repository ppa:webupd8team/java $ sudoapt-get update $ sudoapt-get ...

  7. js request学习

    SP的内置对象在JSP页面中无须声明就可以直接使用,其内置对象常用的有Request,response,session,application,out,config,pageCOntext reque ...

  8. spring-cloud-sleuth 学习资源

    https://www.baeldung.com/spring-cloud-sleuth-single-application https://howtodoinjava.com/spring-clo ...

  9. OpennSSL之基本了解

    HTTPS是一种协议,等于HTTP+TLS(由于历史原因,SSL3.0之后就被TLS1.0替代了).openssl是一套开源工具集,主要有两个特性: 实现了ssl2,ssl3,TLSv1,TLSv1. ...

  10. 【05】Number图解

    [05]Number图解